精英家教网 > 初中数学 > 题目详情
(2012•枣阳市模拟)如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连接DE、OE.
(1)试判断DE与⊙O的位置关系并证明;
(2)求证:BC2=2CD•OE;
(3)若tanC=
5
2
,DE=2,求AD的长.
分析:(1)连接OD,BD,由AB是直径,根据圆周角定理的推论得到∠ADB=∠BDC=90°,由E是BC的中点,根据直角三角形斜边上的中线等于斜边的一半得到DE=BE=EC,则∠EBD=∠EDB,而∠OBD=∠ODB,
则有∠EDO=∠EBO=90°,根据切线的判定定理即可得到DE与⊙O相切;
(2)OE是△ABC的中位线,根据中位线性质得到AC=2OE,根据相似三角形的判定易证得Rt△ABC∽Rt△BDC,则
BC
CD
=
AC
BC
,即BC2=CD•AC,即可得到BC2=2CD•OE;
(3)由DE=BE=EC得到BC=2DE=4,在Rt△BDC中,根据正切的定义得到tanC=
5
2
=
BD
DC
,则可设BD=
5
x,CD=2x,然后利用勾股定理得到(
5
x)2+(2x)2=42,解得x=±
4
3
(负值舍去),则x=
4
3

在Rt△ABD中,由于∠ABD=∠C,则tan∠ABD=tan∠C,再根据正切的定义得
AD
BD
=
5
2
,于是有AD=
5
2
BD=
10
3
解答:(1)解:DE与⊙O相切.理由如下
连接OD,BD.
∵AB是直径,
∴∠ADB=∠BDC=90°,
∵E是BC的中点,
∴DE=BE=EC,
∴∠EBD=∠EDB,
又∵OD=OB,
∴∠OBD=∠ODB,
∴∠EDO=∠EBO=90°,即OD⊥DE,
∴DE与⊙O相切;
(2)证明:∵E是BC的中点,O点是AB的中点,
∴OE是△ABC的中位线,
∴AC=2OE,
∵∠ACB=∠BCD,
∴Rt△ABC∽Rt△BDC,
BC
CD
=
AC
BC
,即BC2=CD•AC,
∴BC2=2CD•OE;

(3)解:在Rt△BDC中,
∵DE=BE=EC,
∴BC=2DE=4,
∵tanC=
5
2
=
BD
DC

∴设BD=
5
x,CD=2x,
∵BD2+CD2=BC2
∴(
5
x)2+(2x)2=42
解得x=±
4
3
(负值舍去),
∴x=
4
3

∴BD=
5
x=
4
3
5

在Rt△ABD中,∵∠ABD=∠C,
∴tan∠ABD=tan∠C,
AD
BD
=
5
2

∴AD=
5
2
BD=
10
3
点评:本题考查了圆的综合题:过半径的外端点与半径垂直的直线是圆的切线;直径所对的圆周角为直角;直角三角形斜边上的中线等于斜边的一半;运用相似三角形的判定与性质证明等积式;运用正切的定义以及勾股定理进行几何计算.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•枣阳市模拟)下列事件是必然事件的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•枣阳市模拟)已知某种感冒病毒的直径是0.000000012米,那么这个数可用科学记数法表示为
1.2×10-8
1.2×10-8
米.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•枣阳市模拟)身高相等的四名同学甲、乙、丙、丁参加风筝比赛,四人放出风筝的线长、线与地面的夹角如下表(假设风筝线是拉直的)所示,则四名同学所放的风筝中最高的是

同学
放出风筝线长 140m 100m 95m 80m
线与地面夹角 30° 45° 45° 60°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•枣阳市模拟)如图,A,B是⊙O上的两点,∠AOB=120°,C是
AB
的中点,判断四边形OACB的形状并证明你的结论.

查看答案和解析>>

同步练习册答案