精英家教网 > 初中数学 > 题目详情
把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=12,CD=14,把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长度为
10
10
分析:首先由旋转的角度为15°,可知∠ACD1=45°.已知∠CAO=45°,即可得AO⊥CD1,然后可在Rt△AOC和Rt△AOD1中,通过解直角三角形求得AD1的长.
解答:解:由题意易知:∠CAB=45°,∠ACD=30°.
若旋转角度为15°,则∠ACO=30°+15°=45°.
∴∠AOC=180°-∠ACO-∠CAO=90°.
在等腰Rt△ABC中,AB=12,则AC=BC=6
2

同理可求得:AO=OC=6.
在Rt△AOD1中,OA=6,OD1=CD1-OC=8,
由勾股定理得:AD1=10.
故答案为:10.
点评:此题主要考查了旋转的性质以及解直角三角形的综合应用,能够发现AO⊥OC是解决此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点O,与D1E1相交于点F.
(1)求∠OFE1的度数;
(2)求线段AD1的长;
(3)若把三角形D1CE1绕着点C顺时针再旋转30°得△D2CE2,这精英家教网时点B在△D2CE2的内部,外部,还是边上?证明你的判断.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄石)把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm,把三角板DCE绕点C顺时针旋转15°得到△D′CE′,如图乙.这时AB与CD′相交于点O,D′E′与AB相交于点F,连接AD′.
(1)求∠OFE′的度数;
(2)求线段AD′的长;
(3)判断线段OF、E′F是否相等?若相等,请你加以证明;若不相等,说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

把一副三角板如图甲放置,其中,斜边。把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙)。这时AB与CD1相交于点,与D1E1相交于点F。

1.求的度数;

2.求线段AD1的长;

3.若把三角形D1CE1绕着点顺时针再旋转30°得△D2CE2,这时点B在△D2CE2的内部、外部、还是边上?说明理由。

 

查看答案和解析>>

同步练习册答案