精英家教网 > 初中数学 > 题目详情
9.如图,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.
(1)试说明:AB∥CD;  
(2)若∠2=35°,求∠BFC的度数.

分析 (1)已知BE、DE平分∠ABD、∠BDC,且∠1+∠2=90°,可得∠ABD+∠BDC=180°,根据同旁内角互补,可得两直线平行.
(2)已知∠1+∠2=90°,即∠BED=90°,那么∠3+∠FDE=90°,将等角代换,即可得出∠3与∠2的数量关系,由邻补角的定义求得∠BFC的度数.

解答 证明:(1)∵BE、DE平分∠ABD、∠BDC,
∴∠1=$\frac{1}{2}$∠ABD,∠2=$\frac{1}{2}$∠BDC;
∵∠1+∠2=90°,
∴∠ABD+∠BDC=180°;
∴AB∥CD;(同旁内角互补,两直线平行)

解:(2)∵DE平分∠BDC,
∴∠2=∠FDE;
∵∠1+∠2=90°,
∴∠BED=∠DEF=90°;
∴∠3+∠FDE=90°;
∴∠2+∠3=90°.
∵∠2=35°,
∴∠3=55°,
∴∠BFC=180°-55°=125°.

点评 此题主要考查了角平分线的性质、三角形内角和定理以及平行线的判定,难度不大.解题的关键是掌握角平分线定义和平行线的判定方法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.
(1)求证:△ABD∽△DCE;
(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;
(3)当△ADE是等腰三角形时,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.一个不透明的口袋中有一个小球,上面分别标有字母a,b,c,每个小球除字母不同外其余均相同,小园同学从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从可口袋中随机摸出一个小球记下字母.用画树状图(或列表)的方法,求小园同学两次摸出的小球上的字母相同的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.2x-8=10-4x.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.$\frac{1}{6x-2}$=$\frac{1}{2}$-$\frac{2}{1-3x}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.
(1)请画出平移后的△A′B′C′,并求△A′B′C′的面积;
(2)在图中找出格点D,使△ACD的面积与△ABC的面积相等.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.关于x的一元二次方程(k+1)x2-2x+1=0没有实数根,则实数k的取值范围是k>0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,△OAD≌△OBC,且∠O=65°,∠C=20°,则∠DAC=85°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,菱形ABCD中,E,F分别在边AD、AB上,DE=BF.求证:EC=FC.

查看答案和解析>>

同步练习册答案