精英家教网 > 初中数学 > 题目详情
如图1,Rt△ABC中,∠B=90°,BA=BC,点M是AB上一点.
操作:作MN⊥AC,垂足为N,连接MC,取MC的中点P,连接BP、NP.
探究:
(1)请猜想与线段BP相关的三个结论.
(2)把△AMN绕点A顺时针旋转任意角度α,请利用图2,图3,选择△AMN不同位置进行操作.
(3)经历(2)以后,在旋转过程中选取你认为始终成立的两个结论,用图②或图③加以说明.

【答案】分析:(1)由题意可猜想,PB=NP,BP=MP=PC,BP⊥NP;
(2)图2:把△AMN绕点A顺时针旋转45°;图3:把△AMN绕点A顺时针旋转90°;
(3)如图2,把△NMP绕N点逆时针旋转90°得△NAD,连接BD,根据旋转的性质,全等三角形的判定,只要证明四边形DNPB是正方形,即可证得结论;图3,同理,只要证明四边形DNPB是正方形;
解答:解:(1)根据题意猜想:PB=NP,BP=MP=PC,BP⊥NP;

(2)如图2、3;

(3)在旋转过程中始终成立的两个结论是:PB=NP,BP⊥NP;
证明:如图2,把△NMP绕N点逆时针旋转90°得△NAD,连接BD,
∴△NMP≌△NAD,
∴ND=NP,ND⊥NP,AD=MP=PC,
∵△AMN和△ABC是等腰直角三角形,
∴∠NMP=∠NAD=135°,
∴∠DAB=135°-90°=45°,
∴△ADB≌△CPB(SAS),
∴∠ABD=∠CBP,
∴∠DBP=90°,
∴四边形DNPB是正方形,
∴BP=NP,BP⊥NP;

如图3,把△BPC绕B点顺时针旋转90°得△BDA,连接BD,延长NA交BD于点E、延长NM到F,
∴△BPC≌△PDA,
∴∠DAE=∠AEM,又MN∥AC,
∴∠DAE=∠CMF,
∴∠NAD=∠NMP,
∴△NAD≌△NMP,
同理,可证四边形DNPB是正方形,
∴BP=NP,BP⊥NP.
点评:本题考查了旋转的性质,全等三角形的判定和性质,直角三角形斜边上的中线,等腰直角三角形,关键要掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角. ③旋转前、后的图形全等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•和平区二模)如图,在Rt△ABC中,∠BAC=90°,AB=6,AM为∠BAC的平分线,CM=2BM.下列结论:
①tan∠MAC=
2
2
;②点M到AB的距离是4;③
AC
CM
=
BC
CA
;④∠B=2∠C;⑤
CM
AB
=
2

其中不正确结论的序号是
①③④⑤
①③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•遵义)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF的长为
2
π
π
2
π
π
(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,AB+BC=9cm,则AB的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,DE⊥DB交AB于点E,设⊙O是△BDE的外接圆.
(1)求证:AC是⊙O的切线;
(2)若DE=2,BD=4,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•嘉定区二模)如图,在Rt△ABC中,∠ACB=90°,点D在AC边上,且BC2=CD•CA.
(1)求证:∠A=∠CBD;
(2)当∠A=α,BC=2时,求AD的长(用含α的锐角三角比表示).

查看答案和解析>>

同步练习册答案