精英家教网 > 初中数学 > 题目详情
8、如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是(  )
分析:由PQ∥AB、MN∥AD可知图中的四边形均为矩形,根据矩形的对角线将矩形分成面积相等的两部分,
可知S△MKB=S△BKQ,S△PDK=S△NDK,S△ADB=S△CDB
又因为S1=S△DAB-S△MKB-S△PDK,S2=S△CDB-S△BKQ-S△DNK,所以S1=S2
解答:解:∵PQ∥AB,MN∥AD
∴四边形AMDN、PQCD、AMKP、QCNK、MBQK均是矩形
∴S△MKB=S△BKQ,S△PDK=S△NDK,S△ADB=S△CDB
∴S1=S△DAB-S△MKB-S△PDK,S2=S△CDB-S△BKQ-S△DNK
∴S1=S2
故选B.
点评:根据已知可知图中所有的四边形都是矩形,利用矩形的对角线将矩形分成面积相等的两部分即可推出结论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、如图,过矩形ABCD的四个顶点作对角线AC、BD的平行线,分别相交于E、F、G、H四点,则四边形EFGH为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图,过矩形ABCD的四个顶点作对角线AC、BD的平行线,分别相交于E、F、G、H四点,则四边形EFGH为
菱形

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,过矩形ABCD的对角线AC的中点O作EF⊥AC交AD于E,交BC于F,连接AF、EC.
(1)试判断四边形AFCE的形状,并证明你的结论;
(2)若CD=4,BC=8,求S四边形AFCE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•肇庆二模)如图,过矩形ABCD(AD>AB)的对角线AC的中点O作AC的垂直平分线EF,分别交AD、BC于点E、F,分别连接AF和CE.
(1)求证:四边形AFCE是菱形;
(2)过点E作AD的垂线交AC于点P,求证:2AE2=AC•AP.

查看答案和解析>>

同步练习册答案