分析 (1)要证BC是⊙O的切线,就要证OB⊥BC,只要证∠OBE=90°即可,首先作辅助线,连接OD、OE,由已知得OE为△ABC的中位线,OE∥AC,从而证得△ODE≌△OBE,推出∠ODE=∠OBE,又DE是⊙O的切线,所以得∠OBE=90°,即OB⊥BC,得证.
(2)由题意使四边形OBED是正方形,即得到OD=BE,又由已知BE=CE,BC=2BE,AB=2OD,所以AB=BC,即△ABC为等腰三角形,进而得出以点O、B、E、D为顶点的四边形是正方形;
(3)直接利用三角形的中位线的性质结合菱形的判定方法进而得出答案.
解答 (1)证明:连接OD、OE,
∵O为AB的中点,E为BC的中点,
∴OE为△ABC的中位线,
∴OE∥AC(三角形中位线性质),
∴∠DOE=∠ODA,∠BOE=∠A(平行线性质),
∵OA=OD
∴∠A=∠ODA
∴∠DOE=∠BOE(等量代换)
在△ODE和△OBE中
$\left\{\begin{array}{l}{OD=OB}\\{∠DOE=∠BOE}\\{OE=OE}\end{array}\right.$,
∴△ODE≌△OBE(SSS)
∴∠ODE=∠OBE
∵DE是⊙O的切线
∴∠ODE=∠OBE=90°
∴OB⊥BC
∴BC是⊙O的切线.
(2)解:当∠A=∠C=45°时,四边形OBDE是正方形,
证明如下:
如图2,连接BD,
∵AB是⊙O的直径,
∴BD⊥AC(直径所对的圆周角为直角),
∵∠A=∠B,
∴AB=BC,
∴D为AC的中点(等腰三角形的性质),
∵E为BC的中点,
∴DE为△ABC的中位线,
∴DE∥AB,
∵DE为⊙O的切线,
∴OD⊥DE,
∴OD⊥AB,
∴∠DOB=∠OBE=∠ODE=90°,
∵OD=OB,
∴四边形OBED为正方形.
故答案为:45°;
(3)解:∵CE=BE,AD≠CD,
∴DE于OB不平行,
∴以点O、B、E、D为顶点的四边形不可能是菱形,
故答案为:不可能.
点评 本题考查了切线的判定,正方形的判定,圆周角定理,菱形的判定,等腰三角形的性质,全等三角形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2个 | B. | 3个 | C. | 4个 | D. | 6个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com