精英家教网 > 初中数学 > 题目详情
精英家教网已知⊙O的半径为1,以O为原点,建立如图所示的直角坐标系.有一个正方形ABCD,顶点B的坐标为(-
13
,0),顶点A在x轴上方,顶点D在⊙O上运动.
(1)当点D运动到与点A、O在一条直线上时,CD与⊙O相切吗?如果相切,请说明理由,并求出OD所在直线对应的函数表达式;如果不相切,也请说明理由;
(2)设点D的横坐标为x,正方形ABCD的面积为S,求出S与x的函数关系式,并求出S的最大值和最小值.
分析:(1)易证CD是⊙O的切线,根据Rt△ODE∽Rt△OBA得到DE的长,再求出D1的坐标,根据待定系数法,求出函数解析式;
(2)过点D作DG⊥OB于G,连接BD、OD,则BD2=BG2+DG2=(BO-OG)2+OD2-OG2,所以S=AB2=
1
2
BD2=7+
13
x,因为-1≤x≤1,所以S的最大值就可以求出.
解答:精英家教网解:(1)CD与⊙O相切.
∵A、D、O在一直线上,∠ADC=90°,
∴∠CDO=90°,
∴CD是⊙O的切线.
CD与⊙O相切时,有两种情况:
①切点在第二象限时(如图1),
设正方形ABCD的边长为a,则a2+(a+1)2=13,
解得a=2,或a=-3(舍去),
过点D作DE⊥OB于E,
则Rt△ODE∽Rt△OBA,
OD
OB
=
DE
BA
=
OE
OA

∴DE=
2
13
13
,OE=
3
13
13

∴点D1的坐标是(-
3
13
13
2
13
13
),
∴OD所在直线对应的函数表达式为y=-
2
3
x
精英家教网
②切点在第四象限时(如图2),
设正方形ABCD的边长为b,则b2+(b-1)2=13,
解得b=-2(舍去),或b=3,
过点D作DF⊥OB于F,则Rt△ODF∽Rt△OBA,
OD
OB
=
OF
OA
=
DF
BA

∴OF=
2
13
13
,DF=
3
13
13

∴点D2的坐标是(
2
13
13
,-
3
13
13
),
∴OD所在直线对应的函数表达式为y=-
3
2
x

精英家教网
(2)如图3,
过点D作DG⊥OB于G,连接BD、OD,
则BD2=BG2+DG2=(BO-OG)2+OD2-OG2=(-
13
-x)2+1-x2=14+2
13
x,
∴S=AB2=
1
2
BD2=7+
13
x,
∵-1≤x≤1,
∴S的最大值为7+
13
,S的最小值为7-
13
点评:最值问题的解决方法,一般是转化为函数问题,转化为求函数的最值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、已知⊙O1的半径为3,⊙O2的半径为2,若⊙O1与⊙O2相切,则O1,O2的距离为
5或1

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知⊙O的半径为2,以⊙O的弦AB为直径作⊙M,点C是⊙O优弧
AB
上的一个动点(不与精英家教网点A、点B重合).连接AC、BC,分别与⊙M相交于点D、点E,连接DE.若AB=2
3

(1)求∠C的度数;
(2)求DE的长;
(3)如果记tan∠ABC=y,
AD
DC
=x(0<x<3),那么在点C的运动过程中,试用含x的代数式表示y.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知⊙O的半径为4,A为线段PO的中点,当OP=10时,点A与⊙O的位置关系为(  )
A、在圆上B、在圆外C、在圆内D、不确定

查看答案和解析>>

科目:初中数学 来源: 题型:

已知球的半径为R=0.53,根据球的体积公式V=
43
πR3
,求球体的体积(π取3.14,保留两个有效数字)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知圆的半径为4cm,直线和圆相离,则圆心到直线的距离d的取值范围是
d>4cm
d>4cm

查看答案和解析>>

同步练习册答案