精英家教网 > 初中数学 > 题目详情

已知在△ABC中,∠A=45°,AB=7,数学公式,动点P、D分别在射线AB、AC上,且∠DPA=∠ACB,设AP=x,△PCD的面积为y.
(1)求△ABC的面积;
(2)如图,当动点P、D分别在射线AB、AC上时,求y关于x的函数解析式,并写出函数的定义域;
(3)如果△PCD是以PD为腰的等腰三角形,求线段AP的长.

解:(1)作CH⊥AB,垂足为点H,设CH=m;
,∴
∵∠A=45°,∴AH=CH=m

∴m=4;
∴△ABC的面积等于

(2)∵AH=CH=4,

∵∠DPA=∠ACB,∠A=∠A,
∴△ADP∽△ABC;
,即

作PE⊥AC,垂足为点E;
∵∠A=45°,AP=x,

∴所求的函数解析式为,即
当D到C时,AP最大.
∵△CPA∽△BCA
=
∴AP==
∴定义域为0<x<

(3)由△ADP∽△ABC,得,即

∵△PCD是以PD为腰的等腰三角形,
∴有PD=CD或PD=PC;
(i)当点D在边AC上时,
∵∠PDC是钝角,只有PD=CD

解得
(ii)当点D在边AC的延长线上时,
如果PD=CD,那么
解得x=16
如果PD=PC,那么
解得x1=32,(不符合题意,舍去)
综上所述,AP的长为,或16,或32.
分析:(1)过C作CH⊥AB于H,在Rt△ACH、Rt△CHB中,分别用CH表示出AH、BH的长,进而由AB=AH+BH=7求出CH的长,即可得到AH、BH的长,由三角形的面积公式可求得△ABC的面积;
(2)由∠DPA=∠ACB,可证得△DPA∽△BCA,根据相似三角形得出的成比例线段可求得AD的表达式,进而可得到CD的长;过P作PE⊥AC于E,根据AP的长及∠A的度数即可求得PE的长;以CD为底、PE为高即可求得△PCD的面积,由此可得出y、x的函数关系;
求自变量取值的时,关键是确定AP的最大值,由于P、D分别在线段AB、AC上,AP最大时D、C重合,可根据相似三角形得到的比例线段求出此时AP的长,由此可得到x的取值范围;
(3)在(2)题中,已证得△ADP∽△ABC,根据相似三角形得到的比例线段,可得到PD的表达式;若△PDC是以PD为腰的等腰三角形,则可分两种情况:PD=DC或PD=PC;
①如果D在线段AC上,此时∠PDC是钝角,只有PD=DC这一种情况,联立两条线段的表达式,即可求得此时x的值;
②如果D在线段AC的延长线上,可根据上面提到的两种情况,分别列出关于x的等量关系式,即可求得x的值.
点评:此题考查了解直角三角形、相似三角形的判定和性质、等腰三角形的判定和性质、二次函数的应用等知识,同时还考查了分类讨论的数学思想方法,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知在△ABC中,AB=AC=5,BC=8,点G为重心,那么GA=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图,已知在△ABC中,∠A=(2x+10)°,∠B=(3x)°,∠ACD是△ABC的一个外角,且∠ACD=(6x-10)°,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知在△ABC中,∠BAC=90°,AC=4,BC=4
5
,若点D、E、F分别为AB、BC、AC边的中点,点P为AB边上的一个动点(且不与点A、B重合),PQ∥AC,且交BC于点Q,以PQ为一边在点B的异侧作正方形PQMN,设正方形PQMN与矩形ADEF的公共部分的面积为S,BP的长为x,试求S与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知在△ABC中,∠BAC为直角,AB=AC,D为AC上一点,CE⊥BD于E.若BD平分∠ABC.
求证:CE=
12
BD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,∠B与∠C的平分线交于点P.
(1)当∠A=70°时,求∠BPC的度数;
(2)当∠A=112°时,求∠BPC的度数;
(3)当∠A=α时,求∠BPC的度数.

查看答案和解析>>

同步练习册答案