分析 (1)先根据三角形内角和定理求出∠ABC+∠ACB的度数,再由∠1=20°,∠2=35°求出∠DBC+∠DCB的度数,由三角形内角和定理即可得出结论;
(1)首先连接AD并延长至点F,然后根据外角的性质,即可判断出∠BDC=∠A+∠B+∠C.
(2)①由(1)可得∠ABX+∠ACX+∠A=∠BXC,然后根据∠A=42°,∠BXC=90°,求出∠ABX+∠ACX的值是多少即可.
②由(1)可得∠DBE=∠DAE+∠ADB+∠AEB,再根据∠DAE=60°,∠DBE=140°,求出∠ADB+∠AEB的值是多少;然后根据∠DCE=$\frac{1}{2}$(∠ADB+∠AEB)+∠DAE,求出∠DCE的度数是多少即可.
③根据∠BG1C=$\frac{1}{10}$(∠ABD+∠ACD)+∠A,∠BG1C=68°,设∠A为x°,可得∠ABD+∠ACD=140°-x°,解方程,求出x的值,即可判断出∠A的度数是多少.
解答 解:(1)解:∵在△ABC中,∠A=62°,
∴∠ABC+∠ACB=180°-62°=118°.
∵∠1=20°,∠2=35°,
∴∠DBC+∠DCB=∠ABC+∠ACB-∠1-∠2=118°-20°-35°=63°.
∴∠BDC=180°-(∠DBC+∠DCB)=180°-63°=117°;
(2)解:(1)如图2,连接AD并延长至点F,
根据外角的性质,可得
∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,
又∵∠BDC=∠BDF+∠CDF,∠BAC=∠BAD+∠CAD,
∴∠BDC=∠A+∠B+∠C;
(3)①由(1),可得
∠ABX+∠ACX+∠A=∠BXC,
∵∠A=42°,∠BXC=90°,
∴∠ABX+∠ACX=90°-42°=48°;
故答案为:48°;
②由(1),可得
∠DBE=∠DAE+∠ADB+∠AEB,
∴∠ADB+∠AEB=∠DBE-∠DAE=140°-60°=80°,
∴$\frac{1}{2}$(∠ADB+∠AEB)=80°÷2=40°,
∴∠DCE=$\frac{1}{2}$(∠ADB+∠AEB)+∠DAE
=40°+60°
=100°;
③∠BG1C=$\frac{1}{10}$(∠ABD+∠ACD)+∠A,
∵∠BG1C=68°,
∴设∠A为x°,
∵∠ABD+∠ACD=140°-x°
∴$\frac{1}{10}$(140-x)+x=70,
∴14-$\frac{1}{10}$x+x=68,
解得x=60
即∠A的度数为60°.
点评 (1)此题主要考查了三角形的内角和定理,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°.
(2)此题还考查了三角形的外角的性质,要熟练掌握,解答此题的关键是要明确:三角形的外角等于和它不相邻的两个内角的和.
科目:初中数学 来源: 题型:选择题
A. | 赔了100元 | B. | 赚了100元 | C. | 不赔不赚 | D. | 赚了180元 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com