分析 在图(1)(2)中可过P作平行线,根据平行线的性质可求得∠A与∠P、∠C的关系;在(3)中根据平行线的性质和三角形内角和定理可求得∠A与∠P、∠C的关系;在(4)中延长BA交PC于点E,利用平行线的性质和三角形外角的性质可求得∠A与∠P、∠C的关系.
解答 解:(1)∠P=∠A+∠C,(2)∠A+∠P+∠C=360°,(3)∠C=∠A+∠P,(4)∠A=∠P+∠C.
选(3)证明如下:
如图(3),设AB、PC交于点E,
∵AB∥CD,
∴∠PEB=∠C,
又∵∠PEB=∠A+∠P,
∴∠C=∠A+∠P.
点评 本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①同位角相等?两直线平行,②内错角相等?两直线平行,③同旁内角互补?两直线平行,④a∥b,b∥c⇒a∥c.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{9x}$ | B. | $\sqrt{x-2}$ | C. | $\sqrt{\frac{x-y}{x}}$ | D. | $\sqrt{3{a}^{2}b}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com