精英家教网 > 初中数学 > 题目详情
2.如果△ABC三边边长分别为a、b、c,且满足关系式|a+b-42|+(b-18)2=0,且c=30,判断△ABC的形状.

分析 利用非负数的性质求出a与b的值,即可作出判断.

解答 解:∵|a+b-42|+(b-18)2=0,
∴a+b=42,b=18,
解得:a=24,b=18,
∵c=30,即242+182=302
∴△ABC为直角三角形.

点评 此题考查了解二元一次方程,以及非负数的性质,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.如图,已知在等腰梯形ABCD中,AB∥CD,AD=BC,求证:AC2=AD2+AB•DC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.甲、乙两地相距400千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图1,线段OA表示货车离甲地距离y1(km)与货车出发时间x(h)之间的函数关系;折线BCDE表示轿车离甲地距离y2(km)与货车出发时间x(h)之间的函数关系,请根据图象解答下列问题:
(1)线段CD表示轿车在途中停留了0.5h,轿车比货车晚出发1h,确早到0.5h
(2)分别求出y1,y2与时间x(h)之间的函数关系式,并写出自变量x的取值范围
(3)如图2,直线x=t(0≤t≤5)分别交线段OA和折线OBCDEA于M,N,设MN的长为l
①直接写出l与x的函数关系式,并标出自变量x的取值范围
②l的实际意义是货车与轿车之间的距离

(4)直接写出当两车相距为35km,x的值为$\frac{7}{12}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知A(o,a),B(b,o),C(3,c)且|a-2|+(b-3)2+$\sqrt{c-4}$=0
(1)求a,b,c的值
(2)若第二象限内有一点P(m,$\frac{1}{3}$),请用含m的式子表示四边形ABOP的面积
(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积为△ABC面积的2倍?若存在,求出点P的坐标,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.要使$5m+\frac{1}{4}$与$\frac{1}{4}+5m$互为相反数,那么m的值是(  )
A.$-\frac{1}{20}$B.$\frac{1}{20}$C.0D.$-\frac{5}{4}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知二次函数y=ax2+bx+c的图象经过点A(x1,0),B(x2,0),C(2,m),且0<x1<x2<2.
(1)求证:m>0;
(2)若b≥1,求证:m<1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知抛物线y=x2-2x-8.
(1)试说明该抛物线与x轴一定有两个交点;
(2)若该抛物线与x轴的两个交点分别为A,B(点A在点B的左边),且它的顶点为P,求△ABP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.先化简,再求值:(2x-y)2-(2x+y)(2x-y),其中x=$\frac{1}{2}$,y=-2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.一辆警车在高速公路的A处加满油,以每小时60千米的速度匀速行驶,已知警车一次加满油后,油箱内的余油量y(升)与行驶时间x(小时)的函数关系的图象如图所示的直线l上的一部分.
(1)求直线l的函数关系式;
(2)如果警车要回到A处,且要求警车中的余油量不能少于10升,那么警车可以行驶到离A处的最远距离是多少?

查看答案和解析>>

同步练习册答案