如图,已知双曲线经过点M,它关于y轴对称的双曲线为.
(1)求双曲线与的解析式;
(2)若平行于轴的直线交双曲线于点A,交双曲线于点B,在轴上存在点P,使以点A,B,O,P为顶点的四边形是菱形,求点P的坐标.
(1), ;
(2)满足要求的点P有两个:或.
解析试题分析:(1)根据M点的坐标求出的解析式,根据对称性求出的解析式;
(2)设出A、B的坐标,根据四边形OPAB是菱形,得到是等边三角形,求出AB,再利用勾股定理求出OE,OE等于点A的纵坐标,联立方程,从而求出P的坐标.
试题解析:(1)在双曲线上,
,,
双曲线与关于轴对称,
;
(2)双曲线与关于轴对称
∴点A与点B关于y轴对称,有OA=OB.
设,则,AB=2m,
∵四边形OPAB是菱形,则OB=AB,
, 是等边三角形.
, ,
, .
, , ,
同理,当四边形OABP是菱形时,
综上所述,满足要求的点P有两个:或.
考点:1.反比例函数2.菱形性质.
科目:初中数学 来源: 题型:解答题
如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(﹣4,0),与y轴交于点C,PB⊥x轴于点B,且AC=BC.
(1)求一次函数、反比例函数的解析式;
(2)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在边为的1正方形组成的网格中,建立平面直角坐标系,若A(﹣4,2)、B(﹣2,3)、C(﹣1,1),将△ABC沿着x轴翻折后,得到△DEF,点B的对称点是点E,求过点E的反比例函数解析式,并写出第三象限内该反比例函数图象所经过的所有格点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知:如图,正比例函数的图象与反比例函数的图象交于点
(1)试确定上述正比例函数和反比例函数的表达式;
(2)根据图象回答,在第一象限内,当取何值时,反比例函数的值大于正比例函数的值?
(3)M(m,n)是反比例函数图像上的一动点,其中0<m<3,过M作直线MB‖x轴交y轴于点B。过点A作直线AC∥y轴交于点C,交直线MB于点D,当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由;
(4)探索:x轴上是否存在点P,使ΔOAP是等腰三角形?若存在,求出点P的坐标,若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,矩形OABC的顶点A,C分别在x,y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数y= (k≠0)在第一象限内的图象经过点D,E,且tan∠BOA=.
(1)求边AB的长;
(2)求反比例函数的解析式和n的值;
(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x,y轴正半轴交于点H,G,求线段OG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知:如图,一次函数的图象与反比例函数的图象交于A、B两点,且点B的坐标为.
(1)求反比例函数的表达式;
(2)点在反比例函数的图象上,求△AOC的面积;
(3)在(2)的条件下,在坐标轴上找出一点P,使△APC为等腰三角形,请直接写出所有符合条件的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,一次函数y1=x+1的图像与反比例函数(k为常数,且k≠0)的图像都经过点A(m,2).
(1)求点A的坐标及反比例函数的表达式;
(2)结合图像直接比较:当时,与的大小。
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
如图,菱形OABC的顶点O是坐标原点,顶点A在x的正半轴上,顶点B、C均在第一象限,OA=2,∠AOC=600,点D在边AB上,将四边形ODBC沿直线OD翻折,使点B和点C分别落在这个坐标平面的点B′和点C′处,且∠C′DB′=600。若某反比例函数的图象经过点B′,则这个反比例函数的解析式为
。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com