精英家教网 > 初中数学 > 题目详情
1.已知关于x的方程x2-kx-4=0的一个根为x=3,则实数k的值为(  )
A.5B.3C.$\frac{3}{5}$D.$\frac{5}{3}$

分析 根据一元二次方程的解,把x=3代入方程得到关于a的一次方程,然后解此方程即可得到k的值.

解答 解:把x=3代入x2-kx-4=0得9-3k-4=0,解得k=$\frac{5}{3}$.
故选D.

点评 本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.利用转化的思想是解决本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

10.抛物线y=x2-4x+3的顶点坐标是(2,-1).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.先化简$\frac{a-1}{a+3}$-$\frac{{a}^{2}-9}{{a}^{2}+6a+9}$,再求值,其中a=$\sqrt{2}$-3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.将正方形ABCD放置在如图所示的直角坐标系中,点B的坐标为(8,0),点P在边AB的中点.连结CP,将△BCP沿PC折叠,使点B落在y轴的M点处,且点M的纵坐标为4.若点Q是x轴正半轴上一个运动的点,连结MQ、CQ,则△CMQ周长的最小值为10+2$\sqrt{65}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知x=2+$\sqrt{3}$是方程x2-5sinθ•x+1=0的一个根,且θ为锐角,求($\frac{3}{4}$tanθ-$\frac{5}{3}$cosθ)2016的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.已知二次三项式ax2+bx+c当x=2时,取得最小值-1;且它的两根的立方和为24,如果x=-1,那么这个二次三项式的值是12$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.画函数y=(x-2)2-1的图象,并根据图象回答:
(1)当x为何值时,y随x的增大而减小.
(2)当x为何值时,y>0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图1,点C将线段AB分成两部分,如果$\frac{AC}{AB}=\frac{BC}{AC}$,那么称点C为线段AB的黄金分割点,某教学兴趣小组在进行研究时,由“黄金分割点”联想到“黄金分割线”,类似的给出“黄金分割线”的定义:“一直线将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果$\frac{{S}_{1}}{S}=\frac{{S}_{2}}{{S}_{1}}$,那么称这条直线为该图形的黄金分割线.
(1)如图2,在△ABC中,∠A=36°,AB=AC,∠C的平分线交AB于点D,请问直线CD是不是△ABC的黄金分割线,并证明你的结论;
(2)如图3,在边长为1的正方形ABCD中,点E是边BC上一点,若直线AE是正方形ABCD的黄金分割线,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.一次函数y=kx-(2-b)的图象如图所示,则k和b的取值范围是(  )
A.k>0,b>2B.k>0,b<2C.k<0,b>2D.k<0,b<2

查看答案和解析>>

同步练习册答案