精英家教网 > 初中数学 > 题目详情

以矩形ABCD的顶点A为圆心作⊙A,要使B、C、D三点中至少有一点在⊙A内,且至少有一个点在⊙A外,如果BC=12,CD=5,则⊙A的半径的取值范围是________.

答案:
解析:

  5r13

  如图,ABCD5BC12,则AC13,离A最近的点为B,离A最远的点为C


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

以矩形ABCD的顶点A为圆心作⊙A,要使B、C、D三点中至少有一点在⊙A内,且至少有一点在⊙A外,如果BC=12,CD=5,则⊙A的半径r的取值范围为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,以矩形ABCD的顶点A为原点,AD所在的直线为x轴,AB所在的直线为y轴,建立平面直角坐标系.点D的坐标为(8,0),点B的坐标为(0,6),点F在对角线AC上运动(点F不与点A、C重合),过点F分别作x轴、y轴的垂线,垂足为G、E.设四边形BCFE的面积为S1,四边形CDGF的面积为S2,△AFG的面积为S3
(1)试判断S1,S2的关系,并加以证明;
(2)当S3:S2=1:3时,求点F的坐标;
(3)如图2,在(2)的条件下,把△AEF沿对角线AC所在直线平移,得到△A′E′F′,且A′,F′两点始终在直线AC上,是否存在这样的点E′,使点E′到x轴的距离与到y轴的距离比是5:4?若存在,请求出点E′的坐标;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•丰台区一模)将矩形纸片分别沿两条不同的直线剪两刀,可以使剪得的三块纸片恰能拼成一个等腰三角形(不能有重叠和缝隙).
小明的做法是:如图1所示,在矩形ABCD中,分别取AD、AB、CD的中点P、E、F,并沿直线PE、PF剪两刀,所得的三部分可拼成等腰三角形△PMN (如图2).
(1)在图3中画出另一种剪拼成等腰三角形的示意图;
(2)以矩形ABCD的顶点B为原点,BC所在直线为x轴建立平面直角坐标系(如图4),矩形ABCD剪拼后得到等腰三角形△PMN,点P在边AD上(不与点A、D重合),点M、N在x轴上(点M在N的左边).如果点D的坐标为(5,8),直线PM的解析式为y=kx+b,则所有满足条件的k的值为
8
5
4
3
或2
8
5
4
3
或2

查看答案和解析>>

科目:初中数学 来源:2009-2010学年吉林省四平市梨树县九年级(上)期末数学试卷(解析版) 题型:解答题

如图1,以矩形ABCD的顶点A为原点,AD所在的直线为x轴,AB所在的直线为y轴,建立平面直角坐标系.点D的坐标为(8,0),点B的坐标为(0,6),点F在对角线AC上运动(点F不与点A,C重合),过点F分别作x轴、y轴的垂线,垂足为G,E.设四边形BCFE的面积为S1,四边形CDGF的面积为S2,△AFG的面积为S3
(1)试判断S1,S2的关系,并加以证明;
(2)当S3:S2=1:3时,求点F的坐标;
(3)如图2,在(2)的条件下,把△AEF沿对角线AC所在直线平移,得到△A′E′F′,且A′,F′两点始终在直线AC上,是否存在这样的点E′,使点E′到x轴的距离与到y轴的距离比是5:4?若存在,请求出点E′的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2012年北京市丰台区中考数学一模试卷(解析版) 题型:解答题

将矩形纸片分别沿两条不同的直线剪两刀,可以使剪得的三块纸片恰能拼成一个等腰三角形(不能有重叠和缝隙).
小明的做法是:如图1所示,在矩形ABCD中,分别取AD、AB、CD的中点P、E、F,并沿直线PE、PF剪两刀,所得的三部分可拼成等腰三角形△PMN (如图2).
(1)在图3中画出另一种剪拼成等腰三角形的示意图;
(2)以矩形ABCD的顶点B为原点,BC所在直线为x轴建立平面直角坐标系(如图4),矩形ABCD剪拼后得到等腰三角形△PMN,点P在边AD上(不与点A、D重合),点M、N在x轴上(点M在N的左边).如果点D的坐标为(5,8),直线PM的解析式为y=kx+b,则所有满足条件的k的值为______.

查看答案和解析>>

同步练习册答案