科目:初中数学 来源: 题型:022
两圆外离,半径分别为6cm和9cm,当一条内公切线与连心线的夹角为45°时,内公切线的长为________cm,圆心距为________cm.
查看答案和解析>>
科目:初中数学 来源:2013-2014学年浙江杭州萧山回澜初中九年级12月阶段性测试数学试卷(解析版) 题型:解答题
小明和同桌小聪在课后做作业时,对课本中的一道作业题,进行了认真探索.
【作业题】如图1,一个半径为100m的圆形人工湖如图所示,弦AB是湖上的一座桥,测得圆周角∠C=45°,求桥AB的长.
小明和小聪经过交流,得到了如下的两种解决方法:
方法一:延长BO交⊙O与点E,连接AE,得 Rt△ABE,∠E=∠C,∴AB=;
方法二:作AB的弦心距OH,连接OB, ∴∠BOH=∠C,解Rt△OHB, ∴HB=,∴AB=.
感悟:圆内接三角形的一边和这边的对锐角、圆的半径(或直径)这三者关系,可构成直角三角形,从而把一边和这边的对锐角﹑半径建立一个关系式.
(1)问题解决:受到(1)的启发,请你解下面命题:如图2,点A(3,0)、B(0,),C为直线AB上一点,过A、O、C的⊙E的半径为2.求线段OC的长.
(2)问题拓展:如图3,△ABC中,∠ ACB=75°,∠ABC=45°,AB=,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连结EF, 设⊙O半径为x, EF为y.①y关于x的函数关系式;②求线段EF长度的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
小明和同桌小聪在课后做作业时,对课本中的一道作业题,进行了认真探索。
【作业题】如图1,一个半径为100m的圆形人工湖如图所示,弦AB是湖上的一座桥,测得圆周角∠C=45°,求桥AB的长。
小明和小聪经过交流,得到了如下的两种解决方法:
方法一:延长BO交⊙O与点E,连接AE,得 Rt△ABE,∠E=∠C,∴AB=100;
方法二:作AB的弦心距OH,连接OB, ∴∠BOH=∠C,解Rt△OHB, ∴HB=50,
∴AB=100。
感悟:圆内接三角形的一边和这边的对锐角、圆的半径(或直径)这三者关系,
可构成直角三角形,从而把一边和这边的对锐角﹑半径建立一个关系式。
(1)问题解决:受到(1)的启发,请你解下面命题:如图2,点A(3,0)、B(0,),C为直线AB上一点,过A、O、C的⊙E的半径为2. 求线段OC的长。
(2)问题拓展:如图3,△ABC中,∠ ACB=75°,∠ABC=45°,AB=2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连结EF, 设⊙O半径为x, EF为y.
① y关于x的函数关系式;②求线段EF长度的最小值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com