精英家教网 > 初中数学 > 题目详情
甲、乙两家商场进行促销活动,甲商场采用“买200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元;…,乙商场按顾客购买商品的总金额打6折促销.
(1)若顾客在甲商场购买了510元的商品,付款时应付多少钱?
(2)若顾客在甲商场购买商品的总金额为x(400≤x<600)元,优惠后得到商家的优惠率为p(p=
优惠金额
购买商品的总金额
),写出p与x之间的函数关系式,并说明p随x的变化情况;
(3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x(200≤x<400)元,你认为选择哪家商场购买商品花钱较少?请说明理由.
(1)根据题意得:
510-200=310(元)
答:顾客在甲商场购买了510元的商品,付款时应付310元.

(2)p与x之间的函数关系式为p=
200
x
,p随x的增大而减小;

(3)设购买商品的总金额为x元,(200≤x<400),
则甲商场需花x-100元,乙商场需花0.6x元,
由x-100>0.6x,得:250<x<400,乙商场花钱较少,
由x-100<0.6x,得:200≤x<250,甲商场花钱较少,
由x-100=0.6x,得:x=250,两家商场花钱一样多.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

等边△OAB和△AEF的一边都在x轴上,双曲线y=
k
x
(k>0)经过边OB的中点C和AE的中点D.已知:OA=2,则△AEF的边长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

心理学研究发现,一般情况下,在一节45分钟的课中,学生的注意力随学习时间的变化而变化.开始学习时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分).
(1)开始学习后第5分钟时与第35分钟时相比较,何时学生的注意力更集中?为什么?
(2)某些数学内容的课堂学习大致可分为三个环节:即“教师引导,回顾旧知--自主探索,合作交流--总结归纳,巩固提高”.其中重点环节“自主探索,合作交流”这一过程一般需要30分钟才能完成,为了确保效果,要求学习时的注意力指标数不底于40.请问这样的课堂学习安排是否合理?并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图(1)所示,正比例函数y=kx与反比例函数y=
t
x
的图象交于点A(-3,2).


(1)试确定上述正比例函数与反比例函数的解析式;
(2)根据图象回答,在第二象限内,当x取何值时,反比例函数的值大于正比例函数的值?
(3)如图(2)所示,P(m,n)是反比例函数图象上的一动点,其中-3<m<0,过点P作直线PBx轴,交y轴于点B,过点A作直线ADy轴,交x轴于点D,交直线PB于点C.当四边形OACP的面积为6时,请判断线段BP与CP的大小关系,并说明理由.
(4)在第(3)问条件中,连接AP,若∠PAO=90°,试求分式m2+
16
m2
的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某厂从2005年起开始投入技术改进资金,经技术改进后,其产品的生产成本不断降低,具体数据如下表:
年度2006200720082009
投入技改资金x(万元)2.5344.5
产品成本y(万元/件)7.264.54
(1)请你认真分析表中数据,从你所学习过的一次函数、二次函数和反比例函数中确定哪种函数能表示其变化规律,说明确定是这种函数而不是其它函数的理由,并求出它的解析式;
(2)按照这种变化规律,若2010年已投入技改资金5万元.
①预计生产成本每件比2009年降低多少万元?
②如果打算在2009年把每件产品成本降低到3.2万元,则还需投入技改资金多少万元?(结果精确到0.01万元)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知反比例函数y=
m
x
的图象经过点N,则此反比例函数的解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在直角坐标系中,有如图所示的Rt△ABO,AB⊥x轴于点B,斜边AO=10,sin∠AOB=
4
5
,反比例函数y=
k
x
(k>0)
的图象经过AO的中点C,且与AB交于点D,则点D的坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知y=y1+y2,y1与x+1成正比例,y2与x+1成反比例,当x=0时,y=-5;当x=2时,y=-7.
(1)求y与x的函数关系式;
(2)当y=5时,求x的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在直角坐标系内有函数y=
1
2x
(x>0)和一条直线的图象,直线与x、y轴正半轴分别交于点A和点B,且OA=OB=1,点P为曲线上任意一点,它的坐标是(a,b),由点P向x轴、y轴作垂线PM、PN(M、N为垂足)分别与直线AB相交于点E和点F.
(1)如果交点E、F都在线段AB上(如图),分别求出E、F点的坐标(只需写出答案.不需写出计算过程);
(2)当点P在曲线上移动,试求△OEF的面积(结果可用a、b的代数式表示);
(3)如果AF=
6
2
,求
OF
OE
的值.

查看答案和解析>>

同步练习册答案