精英家教网 > 初中数学 > 题目详情
⊙O经过△ABC的三个顶点,则下列说法正确的是(  )
分析:根据内接三角形以及三角形的外接圆的定义分别分析得出即可.
解答:解:∵⊙O经过△ABC的三个顶点,
∴△ABC是⊙O的内接三角形,⊙O是△ABC的外接圆.
故选:D.
点评:此题主要考查了内接三角形以及三角形的外接圆的定义,结合图形得出是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.
(1)求抛物线的对称轴;
(2)写出A,B,C三点的坐标并求抛物线的解析式;
(3)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在△PAB是等腰三角形?若存在,求出所有符合条件的点P坐标;不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC,过A、B、C三点的抛物线的解析式为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图,△ABC中,AC=BC,BC与x轴平行,点A在x轴上,点C在y轴上,抛物线y=ax2-5ax+4经精英家教网过△ABC的三个顶点,
(1)求出该抛物线的解析式;
(2)若直线y=kx+7将四边形ACBD面积平分,求此直线的解析式;
(3)若直线y=kx+b将四边形ACBD的周长和面积同时分成相等的两部分,请你确定y=kx+b中k的取值范围.(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,△ABC中,点A在x轴上,点C在y轴上,BC∥x轴,AB平分∠CAO.二次函数y=ax2-5ax+4的图象经过△ABC的三个顶点.
(1)点C的坐标为
(0,4)
(0,4)
,二次函数y=ax2-5ax+4的图象的对称轴为
直线x=
5
2
直线x=
5
2
,点B的坐标为
(5,4)
(5,4)

(2)求a的值,然后写出二次函数的关系式;
(3)正方形EFGH的顶点E在线段AB上,顶点F在对称轴右侧的图象上,边GH在x轴上,求正方形EFGH的边长;
(4)请在图②中用尺规作图的方式探究函数图象上是否存在点P(点B除外),使△ACP为等腰三角形?若存在,请在图②中作出所有满足条件的点P(保留作图痕迹);若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.
(1)求抛物线的对称轴;
(2)写出A,B,C三点的坐标并求抛物线的解析式;
(3)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在△PAB是等腰三角形?若存在,求出所有符合条件的点P坐标;不存在,请说明理由.
(4)在抛物线对称轴上是否存在点M,使点M到点A和B的距离之差最大?若存在,直接写出所有符合条件的点M坐标;不存在,请说明理由.

查看答案和解析>>

同步练习册答案