¡¾´ð°¸¡¿
·ÖÎö£º£¨1£©Ö±ÏßABµÄ½âÎöʽÖУ¬Áîx=0£¬¿ÉÇóµÃµãAµÄ×ø±ê£»Áîy=0£¬¿ÉÇóµÃµãBµÄ×ø±ê£®
£¨2£©ÓÉÓÚµãPµÄλÖò»È·¶¨£¬ÄÇôÐèÒª¿¼ÂÇÁ½ÖÖÇé¿ö£º¢ÙµãPÔÚÖ±ÏßAB×ó²à¡¢¢ÚµãPÔÚÖ±ÏßABÓҲࣻ½âÌâµÄ·½·¨´óÖÂÏàͬ£¬¹ýÔ²ÐÄ×÷Ö±ÏßABµÄ´¹Ïߣ¬ÔÚ¹¹½¨µÄÖ±½ÇÈý½ÇÐÎÖУ¬¸ù¾ÝÔ²µÄ°ë¾¶ºÍÖ±½ÇÈý½ÇÐÎÖеÄÌØÊâ½Ç£¬¼´¿ÉÈ·¶¨Ô²ÐÄPµÄ×ø±ê£®
£¨3£©Ê×ÏÈÀûÓôý¶¨ÏµÊý·¨È·¶¨Å×ÎïÏߵĽâÎöʽ£¬½ø¶øÓÃδ֪Êý±íʾµãMµÄ×ø±ê£»ÓÉͼ¿ÉÖª£ºËıßÐÎABMQµÄÃæ»ý¿ÉÓÉËıßÐÎAOMQºÍ¡÷ABOµÄÃæ»ý²îÇóµÃ£¬Óɴ˵õ½¹ØÓÚËıßÐÎABMQµÄÃæ»ýºÍMµãºá×ø±êµÄº¯Êý¹Øϵ£¬Óɺ¯ÊýµÄÐÔÖÊ¿ÉÅжÏËıßÐÎABMQÊÇ·ñ´æÔÚ×î´óÃæ»ý£®
½â´ð£º½â£º£¨1£©µ±x=0ʱ£¬y=2£»µ±y=0ʱ£¬x=2£®
ËùÒÔA£¨0£¬2£©£¬B£¨2£¬0£©£®
£¨2£©µ±¡ÑP´Ó×óÏòÓÒÔ˶¯Ê±¡ÑPÓëÖ±ÏßABÓÐÁ½ÖÖÏàÇÐÇé¿ö£®
µÚÒ»ÖÖÇé¿ö£ºÈçͼ£¬µ±¡ÑPÔÚÖ±ÏßABµÄ×ó²àÓëÖ±ÏßABÏàÇÐʱ£¬¹ýÇеãD
1×÷D
1P
1¡ÍxÖáÓÚP
1£¬
ÔÚRt¡÷D
1P
1BÖУ¬¡ÏOBD
1=45°£¬D
1P
1=
£®
ËùÒÔBP
1=2£¬Ç¡ºÃP
1ÓëOµãÖغϣ¬×ø±êΪ£¨0£¬0£©£®
µÚ¶þÖÖÇé¿ö£ºÈçͼ£¬µ±¡ÑPÔÚÖ±ÏßABµÄÓÒ²àÓëÖ±ÏßABÏàÇÐʱ£¬¹ýÇеãD
2×÷D
2P
2¡ÍxÖáÓëP
2£¬
ÔÚRt¡÷D
2P
2BÖУ¬¡ÏP
2BD
2=45°£¬D
2P
2=
£¬
ËùÒÔBP
2=2£¬OP
2=4£¬¼´PµãµÄ×ø±êΪ£¨4£¬0£©£®
£¨3£©Èçͼ£¨3£©Å×ÎïÏßy=ax
2+bx+c¹ýÔµãO£¬ÇÒ¶¥µã×ø±êΪ£¨2£¬2£©£®
¿ÉÉèy=a£¨x-2£©
2+2£¬µ±x=0ʱy=0£¬
ÇóµÃa=-
£¬ËùÒÔy=-
x
2+2x£®
ÉèÔÚxÖáÉÏ·½µÄÅ×ÎïÏßÉÏ´æÔÚµãQʹËıßÐÎABMQµÄÃæ»ý×î´ó£¬µãQ×ø±êΪ£¨m£¬-
m
2+2m£©£¬Á¬½ÓOQ£¬ÓÉÌâÒâµÃ
S
ËıßÐÎABMQ=S
¡÷AOQ+S
¡÷OMQ-S
¡÷AOB=
m×2+
×4×£¨-
m
2+2m£©-
×2×2
=-m
2+5m-2=-£¨m-
£©
2+
£®
µ±m=
ʱ£¬S
ËıßÐÎABMQµÄ×î´óֵΪ
£®
¾¼ìÑ飬µãQ£¨
£¬
£©ÔÚÖ±ÏßABÉÏ·½£¬ËùÒÔ£¬ÔÚxÖáÉÏ·½Í¬Ê±Ò²ÔÚÖ±ÏßABÉÏ·½µÄÅ×ÎïÏßÉÏ´æÔÚµãQʹËıßÐÎABMQµÄÃæ»ý×î´ó£¬S
ËıßÐÎABMQµÄ×î´óֵΪ
£®
µãÆÀ£º¸ÃÌ⿼²éÁ˺¯Êý½âÎöʽµÄÈ·¶¨¡¢Ô²ÓëÖ±ÏßµÄλÖùØϵ¡¢Í¼ÐÎÃæ»ýµÄ½â·¨µÈ×ÛºÏ֪ʶ£®£¨2£©ÌâÔÚ½â´ðʱ£¬PµãµÄÁ½ÖÖλÖÃÊÇÈÝÒ×±»ºöÊӵĵط½£®