精英家教网 > 初中数学 > 题目详情

点A的坐标为(2,1),把点A绕着坐标原点顺时针旋转90°到点B,那么点B的坐标是________.

(1,-2)
分析:过A作AC⊥Y轴于C,过B作BD⊥Y轴于D,根据旋转求出∠A=∠BOD,证△AC0≌△ODB,推出BD=OC=1,OD=CA=2即可.
解答:解
过A作AC⊥y轴于C,过B作BD⊥y轴于D.

∵∠AOB=90°,∠ACO=90°,
∴∠AOC+∠BOD=90°,∠A+∠AOC=90°,
∴∠A=∠BOD,
∵∠ACO=∠BDO=90°,OA=OB,
∴△AC0≌△ODB,
∴BD=OC=1,OD=CA=2,
∴B的坐标是(1,-2).
故答案为:(1,-2).
点评:本题主要考查对坐标与图形变换-旋转,全等三角形的性质和判定等知识点的理解和掌握,能正确画出图形并求出△AC0≌△ODB是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,2).画出△OAB绕点O逆时针旋转90°后的△OA1B1,并求出AA1的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

15、第四象限的一点A,到x轴的距离为4,到y轴的距离为3,则点A的坐标为
(3,-4)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为矩形,点C与点D在x轴上,且点A的坐标为(1,3).已知直精英家教网线y=-
3
4
x+
15
4
经过A、C两点,抛物线y=ax2+bx经过A、B两点.
(1)求出C点的坐标;
(2)求抛物线的解析式;
(3)若直线MN为抛物线的对称轴,E为x轴上的一个动点,则是否存在以E点为圆心,且同时与直线MN和直线AC都相切的圆?如果存在,请求出⊙E的半径;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在平面直角坐标系中,二次函数y=ax2+bx+c(a<0)的图象的顶点为点D,与y轴交于点C,与x轴交于点A、B,点A在原点的左侧,点B的坐标为(3,0),OB=OC,tan∠ACO=
13

精英家教网
(1)求这个二次函数的解析式;
(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由;
(3)如图2,若点G(2,y)是该抛物线上一点,点P是直线AG上方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正比例函数y1=k1x与反比例函数y2=
k2
x
 相交于A、B点.已知点A的坐标为A(4,n),BD⊥x轴于点D,且S△BDO=4.过点A的一次函数y3=k3x+b与反比例函数的图象交于另一点C,与x轴交于点E(5,0).
(1)求正比例函数y1、反比例函数y2和一次函数y3的解析式;
(2)结合图象,求出当k3x+b>
k2
x
>k1x时x的取值范围.

查看答案和解析>>

同步练习册答案