精英家教网 > 初中数学 > 题目详情

(2006·攀枝花)如图,AD=BC,要使四边形ABCD是平行四边形,还需补充的一个条件是________.

答案:略
解析:

答案不唯一,如①ADBC,②AB=CD,③∠A+∠B=180°,④∠C+∠D=180°等.


练习册系列答案
相关习题

科目:初中数学 来源:2006年全国中考数学试题汇编《反比例函数》(05)(解析版) 题型:解答题

(2006•攀枝花)某人采用药熏法进行室内消毒,已知药物燃烧时室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧后,y与x成反比例(如图所示),现测得药物10分钟燃完,此时室内空气中每立方米的含药量为8毫克,请根据题中所提供的信息,解答下列问题:
(1)药物燃烧时,y与x的函数关系式为______,自变量x的取值范围是______;药物燃烧后,y与x的函数关系式为______.
(2)研究表明,当空气中每立方米的含药量低于2毫克时,人方可进入室内,那么从消毒开始,至少需要经过______分钟后,人才可以回到室内.
(3)当空气中每立方米的含药量不低于5毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效,为什么?

查看答案和解析>>

科目:初中数学 来源:2009年江苏省苏州市相城区初三第一学期调研测试数学试卷(解析版) 题型:解答题

(2006•攀枝花)某人采用药熏法进行室内消毒,已知药物燃烧时室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧后,y与x成反比例(如图所示),现测得药物10分钟燃完,此时室内空气中每立方米的含药量为8毫克,请根据题中所提供的信息,解答下列问题:
(1)药物燃烧时,y与x的函数关系式为______,自变量x的取值范围是______;药物燃烧后,y与x的函数关系式为______.
(2)研究表明,当空气中每立方米的含药量低于2毫克时,人方可进入室内,那么从消毒开始,至少需要经过______分钟后,人才可以回到室内.
(3)当空气中每立方米的含药量不低于5毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效,为什么?

查看答案和解析>>

科目:初中数学 来源:2006年四川省攀枝花市中考数学试卷(课标卷)(解析版) 题型:解答题

(2006•攀枝花)某人采用药熏法进行室内消毒,已知药物燃烧时室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧后,y与x成反比例(如图所示),现测得药物10分钟燃完,此时室内空气中每立方米的含药量为8毫克,请根据题中所提供的信息,解答下列问题:
(1)药物燃烧时,y与x的函数关系式为______,自变量x的取值范围是______;药物燃烧后,y与x的函数关系式为______.
(2)研究表明,当空气中每立方米的含药量低于2毫克时,人方可进入室内,那么从消毒开始,至少需要经过______分钟后,人才可以回到室内.
(3)当空气中每立方米的含药量不低于5毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效,为什么?

查看答案和解析>>

科目:初中数学 来源:2006年四川省攀枝花市中考数学试卷(课标卷)(解析版) 题型:填空题

(2006•攀枝花)已知抛物线y=ax2+bx+c经过点(1,3)与(-1,5),则a+c的值是   

查看答案和解析>>

科目:初中数学 来源:2005年广东省深圳市实验中学高一直升考试数学试卷 (解析版) 题型:解答题

(2006•攀枝花)已知抛物线y=ax2+bx+c与y轴的交点为C,顶点为M,直线CM的解析式y=-x+2并且线段CM的长为
(1)求抛物线的解析式;
(2)设抛物线与x轴有两个交点A(x1,0)、B(x2,0),且点A在B的左侧,求线段AB的长;
(3)若以AB为直径作⊙N,请你判断直线CM与⊙N的位置关系,并说明理由.

查看答案和解析>>

同步练习册答案