精英家教网 > 初中数学 > 题目详情
如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以2cm/s的速度运动,同时点F从点B出发沿射线BC以3cm/s的速度运动,设运动时间为t(s).
(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF.
(2)①当t为何值时,四边形ACFE是平行四边形;②当t为何值时,以A、F、C、E为顶点的四边形是直角梯形.
分析:1)由题意得到AD=CD,再由AG与BC平行,利用两直线平行内错角相等得到两对角相等,利用AAS即可得证;
(2)①若四边形ACFE是菱形,则有CF=AC=AE=6,由E的速度求出E运动的时间即可;
②分两种情况考虑:
情形一:四边形AFCE为直角梯形时,AF⊥BC或CE⊥AG.
情形二:若四边形ACFE是直角梯形时,此时EF⊥AG.
解答:(1)证明:∵AG∥BC,
∴∠EAD=∠DCF,∠AED=∠DFC,
∵D为AC的中点,
∴AD=CD,
在△ADE和△CDF中,
∠EAD=∠DCF
∠ADE=∠CDF
AD=CD

∴△ADE≌△CDF(AAS);

(2)解:①由题意得:AE=2t,CF=3t-6.
若四边形ACFE是平行四边形,则有CF=AE,则2t=3t-6,
解得t=6.
所以,当t=6时,四边形ACFE是平行四边形;
②情形一:四边形AFCE为直角梯形时,AF⊥BC或CE⊥AG.
当AF⊥BC时,则BF=3t=3,解得t=1,符合题意;
当CE⊥AG,则AE=2t=3,解得t=1.5,符合题意.
情形二:若四边形ACFE是直角梯形时,此时EF⊥AG.
则BF-AE=3,即3t-2t=3,解得t=3,符合题意;
综上所述,当t=1s、1.5s或3s时,以A、F、C、E为顶点的四边形是直角梯形.
点评:此题考查了平行四边形的判定,全等三角形的判定与性质,等边三角形的性质,以及直角梯形,弄清题意是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在等边三角形ABC的边BC、AC上分别取点D、E,使BD=CE,AD与BE相交于点P.则∠APE的度数为
 
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图,在等边三角形ABC中,三条中线AE,BD,CF相交于点O,则等边三角形ABC中,从△BOF到△COD需要经过的变换是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等边三角形ABC中,BD⊥BC,过A作AD⊥BD于D,已知△ABC周长为M,则AD=(  )
A、
M
2
B、
M
6
C、
M
8
D、
M
12

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD,求证:△BDE为等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等边三角形△ABC中,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,且PR=PS,下面给出的四个结论:①点P在∠A的平分线上,②AS=AR,③QP∥AR,④△BRP≌△QSP,则其中正确的是(  )

查看答案和解析>>

同步练习册答案