精英家教网 > 初中数学 > 题目详情
“绿色出行,低碳健身”已成为广大市民的共识.某旅游景点新增了一个公共自行车停车场,6:00至18:00市民可在此借用自行车,也可将在各停车场借用的自行车还于此地.林华同学统计了周六该停车场各时段的借、还自行车数,以及停车场整点时刻的自行车总数(称为存量)情况,表格中x=1时的y值表示7:00时的存量,x=2时的y值表示8:00时的存量…依此类推.他发现存量y(辆)与x(x为整数)满足如图所示的一个二次函数关系.
时段
x
还车数(辆)
借车数(辆)
存量y(辆)
6:00﹣7:00
1
45
5
100
7:00﹣8:00
2
43
11
n





根据所给图表信息,解决下列问题:
(1)m=   ,解释m的实际意义:   
(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;
(3)已知9:00~10:00这个时段的还车数比借车数的3倍少4,求此时段的借车数.
(1)60;该停车场当日6:00时的自行车数。
(2)y=﹣4x2+44x+60(x为1﹣12的整数)。
(3)10辆。

试题分析:(1)根据题意m+45﹣5=100,解得m=60,即6点之前的存量为60。m表示该停车场当日6:00时的自行车数/
(2)先求出n的值,然后利用待定系数法确定二次函数的解析式。
(3)设9:00~10:O0这个时段的借车数为x辆,则还车数为(3x﹣4)辆,把x=3代入y=﹣4x2+44x+60得到8:00~9:00的存量为156;把x=4代入y=﹣4x2+44x+60得到9:00~10:00的存量为172,所以156﹣x+(3x﹣4)=172,然后解方程即可。 
解:(1)60;该停车场当日6:00时的自行车数。
(2)n=100+43﹣11=132,
设二次函数的解析式为y=ax2+bx+c,
把(1,100),(2,132)、(0,60)代入得
,解得
∴二次函数的解析式为y=﹣4x2+44x+60(x为1﹣12的整数)。
(3)设9:00~10:O0这个时段的借车数为x辆,则还车数为(3x﹣4)辆,
把x=3代入y=﹣4x2+44x+60得y=﹣4×32+44×3+60=156,
把x=4代入y=﹣4x2+44x+60得y=﹣4×42+44×4+60=172,即此时段的存量为172,
∴156﹣x+(3x﹣4)=172,解得x=10。
答:此时段借出自行车10辆。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2+bx+c过点A(﹣4,﹣3),与y轴交于点B,对称轴是x=﹣3,请解答下列问题:

(1)求抛物线的解析式.
(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.
注:抛物线y=ax2+bx+c(a≠0)的对称轴是

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在⊙C的内接△AOB中,AB=AO=4,tan∠AOB=,抛物线(a≠0)经过点A(4,0)与点(﹣2,6).

(1)求抛物线的解析式;
(2)直线m与⊙C相切于点A,交y轴于点D,动点P在线段OB上,从点O出发向点B运动,同时动点Q在线段DA上,从点D出发向点A运动,点P的速度为每秒1个单位长,点Q的速度为每秒2个单位长.当PQ⊥AD时,求运动时间t的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知.在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=,若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内,将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.

(1)求经过点O,C,A三点的抛物线的解析式.
(2)求抛物线的对称轴与线段OB交点D的坐标.
(3)线段OB与抛物线交与点E,点P为线段OE上一动点(点P不与点O,点E重合),过P点作y轴的平行线,交抛物线于点M,问:在线段OE上是否存在这样的点P,使得PD=CM?若存在,请求出此时点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

今年,6月12日为端午节。在端午节前夕,三位同学到某超市调研一种进价为2元的粽子的销售情况。请根据小丽提供的信息,解答小华和小明提出的问题。

(1)小华的问题解答:    
(2)小明的问题解答:    

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

崇左市政府大楼前广场有一喷水池,水从地面喷出,喷出水的路径是一条抛物线.如果以水平地面为x轴,建立如图所示的平面直角坐标系,水在空中划出的曲线是抛物线y=﹣x2+4x(单位:米)的一部分.则水喷出的最大高度是   千米.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数的图象如图,点A0位于坐标原点,点A1,A2,A3…An在y轴的正半轴上,点B1,B2,B3…Bn在二次函数位于第一象限的图象上,点C1,C2,C3…Cn在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3…四边形An﹣1BnAnCn都是菱形,∠A0B1A1=∠A1B2A1=∠A2B3A3…=∠An﹣1BnAn=60°,菱形An﹣1BnAnCn的周长为   

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是
A.5个B.4个C.3个D.2个

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=2(x+1)(x-a),其中a>0,若当x≤2时,y随x增大而减小,当x≥2时y随x增大而增大,则a的值是
A.3B.5C.7D.不确定

查看答案和解析>>

同步练习册答案