精英家教网 > 初中数学 > 题目详情
如图,分别以△ABC的边AB、AC为边向外作等边三角形ABD和等边三角形ACE,CD与BE相交于点O,判断∠AOD与∠AOE的数量关系,并证明.
分析:过点A作AM⊥DC于M,AN⊥BE于N,推出△DAC≌△BAE,可知它们的面积相等,即可推出AM=AN,即可推出:∠AOD=∠AOE.
解答:答:∠AOD与∠AOE的数量关系为相等.
证明:如图,过点A作AM⊥DC于M,AN⊥BE于N,
∵△ABD和△ACE都是等边三角形,
∴AD=AB,AC=AE,∠DAB=∠CAE=60°.
∵∠BAC=∠CAB,
∴∠DAC=∠BAE.
∴△DAC≌△BAE.
∴DC=BE,
∴S△DAC=S△BAE
∵S△DAC=
1
2
DC•AM=S△BAE=
1
2
BE•AN,
∴AM=AN.
∴点A在∠DOE的角平分线上.
∴∠AOD=∠AOE.
点评:本题主要考查全等三角形的判定和性质、角平分线的性质、等边三角形的性质,正确的作出辅助线是解决此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,分别以△ABC的三边为边在BC的同侧作三个等边三角形,即△ABD,△BCE,△ACF.请回答下列问题:
(1)说明四边形ADEF是什么四边形?
(2)当△ABC满足什么条件时,四边形ADEF是矩形?
(3)当△ABC满足什么条件时,四边形ADEF是菱形?
(4)当△ABC满足什么条件时,四边形ADEF是正方形?
(5)当△ABC满足什么条件时,以A,D,E,F为顶点的四边形不存在?
(第(2)(3)(4)(5)题不必说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到AB的距离是AB的一半.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,分别以△ABC的边AB、AC向外作等边△ABE和等边△ACD,求证:BD=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,分别以△ABC的边AB,AC向外作等边三角形ABD和等边三角形ACE,线段BE与CD相交于点O,连接OA.
(1)求证:BE=DC;
(2)求∠BOD的度数;
(3)求证:OA平分∠DOE.

查看答案和解析>>

同步练习册答案