精英家教网 > 初中数学 > 题目详情

【题目】直线经过原点和点,点的坐标为.

(1)求直线所对应的函数解析式;

(2)当P在线段OA上时,设点横坐标为,三角形的面积为,写出关于的函数解析式,并指出自变量的取值范围;

(3)当P在射线OA上时,在坐标轴上有一点,使正整数),请直接写出点的坐标(本小题只要写出结果,不需要写出解题过程)

【答案】(1)(2)(3)

【解析】

(1)利用待定系数法即可解决问题;

(2)利用三角形的面积公式计算即可;

(3)分两种情形分别求解即可.

(1)设直线l的解析式为y=kx,

把点A坐标代入得到6=3k,

k=2,

∴直线l的解析式为y=2x.

(2)P(x,2x),B(4,0),

S=×4×2x=4x,(0<x≤3);

(3)∵点B的坐标为(6,0),点C在坐标轴上,

①当点Cx轴上时,则BOPCOP是同高三角形,

SBOP:SCOP=2:m,

OC=3m,

C(3m,0)或(-3m,0);

②当点Cx轴上时,则BOPCOP是同高三角形,

P(x,2x),SBOP:SCOP=2:m,

,即

OC=6m,

C(0,6m)或(0,-6m).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABBCDCBC,若∠DBC=45°,∠A=70°,求∠D,∠AED,∠BFE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点D,E分别在AB,AC上,DE∥BC,EF平分∠DEC,交BC于点F,且∠ABC=55°,∠C=70°.

(1)求∠DEF的度数;

(2)请判断EF与AB的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们用表示不大于的最大整数,例如:;用表示大于的最小整数,例如:.解决下列问题:

1= ,=

2)若=2,则的取值范围是 ;若=1,则的取值范围是

3)已知满足方程组,求的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以O(0,0)、A(2,0)为顶点作正△OAP1 , 以点P1和线段P1A的中点B为顶点作正△P1BP2 , 再以点P2和线段P2B的中点C为顶点作△P2CP3 , …,如此继续下去,则第六个正三角形中,不在第五个正三角形上的顶点P6的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)问题背景:已知,如图1,等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D,AB=a,△ABC的面积为S,则有BC=a,S=a2

(2)迁移应用:如图2,△ABC△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.

求证:△ADB≌△AEC;

∠ADB的度数.

AD=2,BD=4,求△ABC的面积.

(3)拓展延伸:如图3,在等腰△ABC中,∠BAC=120°,在∠BAC内作射线AM,点D与点B关于射线AM轴对称,连接CD并延长交AM于点E,AF⊥CDF,连接AD,BE.

∠EAF的度数;

CD=5,BD=2,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将正整数12019按一定规律排列如下表:

平移表中带阴影的方框,则方框中五个数的和可以是(

A. 2010 B. 2018 C. 2019 D. 2020

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在我市举行的中学生安全知识竞赛中共有20道题.每一题答对得5分,答错或不答都扣3分.
(1)小李考了60分,那么小李答对了多少道题?
(2)小王获得二等奖(75~85分),请你算算小王答对了几道题?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.

1)甲、乙两种款型的T恤衫各购进多少件?

2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完 这批T恤衫商店共获利多少元?

查看答案和解析>>

同步练习册答案