A. | ①②④ | B. | ①③④ | C. | ②③④ | D. | ①②③ |
分析 由折叠性质得∠1=∠2,CE=FE,BF=BC=10,则在Rt△ABF中利用勾股定理可计算出AF=8,所以DF=AD-AF=2,设EF=x,则CE=x,DE=CD-CE=6-x,在Rt△DEF中利用勾股定理得(6-x)2+22=x2,解得x=$\frac{10}{3}$,即ED=$\frac{8}{3}$;再利用折叠性质得∠3=∠4,BH=BA=6,AG=HG,易得∠2+∠3=45°,于是可对①进行判断;设AG=y,则GH=y,GF=8-y,在Rt△HGF中利用勾股定理得到y2+42=(8-y)2,解得y=3,则AG=GH=3,GF=5,由于∠A=∠D和$\frac{AB}{DE}$≠$\frac{AG}{DF}$,可判断△ABG与△DEF不相似,则可对②进行判断;根据三角形面积公式可对③进行判断;利用AG=3,GF=5,DF=2可对④进行判断.
解答 解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处,
∴∠1=∠2,CE=FE,BF=BC=10,
在Rt△ABF中,∵AB=6,BF=10,
∴AF=$\sqrt{1{0}^{2}-{6}^{2}}$=8,
∴DF=AD-AF=10-8=2,
设EF=x,则CE=x,DE=CD-CE=6-x,
在Rt△DEF中,∵DE2+DF2=EF2,
∴(6-x)2+22=x2,解得x=$\frac{10}{3}$,
∴ED=$\frac{8}{3}$,
∵△ABG沿BG折叠,点A恰落在线段BF上的点H处,
∴∠3=∠4,BH=BA=6,AG=HG,
∴∠2+∠3=$\frac{1}{2}$∠ABC=45°,所以①正确;
HF=BF-BH=10-6=4,
设AG=y,则GH=y,GF=8-y,
在Rt△HGF中,∵GH2+HF2=GF2,
∴y2+42=(8-y)2,解得y=3,
∴AG=GH=3,GF=5,
∵∠A=∠D,$\frac{AB}{DE}$=$\frac{6}{\frac{8}{3}}$=$\frac{9}{4}$,$\frac{AG}{DF}$=$\frac{3}{2}$,
∴$\frac{AB}{DE}$≠$\frac{AG}{DF}$,
∴△ABG与△DEF不相似,所以②错误;
∵S△ABG=$\frac{1}{2}$•6•3=9,S△FGH=$\frac{1}{2}$•GH•HF=$\frac{1}{2}$×3×4=6,
∴S△ABG=$\frac{3}{2}$S△FGH,所以③正确;
∵AG+DF=3+2=5,而GF=5,
∴AG+DF=GF,所以④正确.
∴①③④正确.
故选B.
点评 本题考查的是相似三角形的判定与性质,熟练掌握折叠和矩形的性质、相似三角形的判定方法;会运用勾股定理计算线段的长.
科目:初中数学 来源: 题型:选择题
A. | 点A | B. | 点B | C. | 点C | D. | 点D |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | (-3-2)2 | B. | (-3)×(-2)4 | C. | (-3)4÷(-4)3 | D. | (-3)3×(-$\frac{1}{2}$)2 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 3 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | (-1,0) | B. | (-$\sqrt{3}$,0) | C. | (0,1) | D. | (0,$\sqrt{3}$) |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | a2nbmn | B. | a${\;}^{{n}^{2}}$b${\;}^{{m}^{n}}$ | C. | a${\;}^{{n}^{2}}$bmn | D. | a2nb${\;}^{{m}^{n}}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com