精英家教网 > 初中数学 > 题目详情

如图,在菱形ABCD中,AC为对角线,点E、F分别是边BC、AD的中点.

(1)求证:△ABE≌△CDF;

(2)若∠B=60°,AB=4,求线段AE的长.

 

【答案】

解:(1)证明:∵四边形ABCD是菱形,∴AB=BC=AD=CD,∠B=∠D。

∵点E、F分别是边BC、AD的中点,∴BE=DF。

在△ABE和△CDF中,∵AB= CD,∠B=∠D, BE=DF,

∴△ABE≌△CDF(SAS)。

(2)∵∠B=60°,AB=BC,∴△ABC是等边三角形。

∵点E是边BC的中点,∴AE⊥BC。

在Rt△AEB中,∠B=60°,AB=4,∴AE=AB sin60°=2

【解析】

试题分析:(1)首先根据菱形的性质,得到AB=BC=AD=CD,∠B=∠D,结合点E、F分别是边BC、AD的中点,即可证明出△ABE≌△CDF。

 (2)证明出△ABC是等边三角形,结合题干条件在Rt△AEB中,∠B=60°,AB=4,即可求出AE的长。

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在菱形ABCD中,AC=6,BD=8,则菱形的边长为(  )
A、5B、10C、6D、8

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在菱形ABCD中,∠ABC=60°,E为AB边的中点,P为对角线BD上任意一点,AB=4,则PE+PA的最小值为
 
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•河南)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.
(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM的值为
1
1
时,四边形AMDN是矩形;
           ②当AM的值为
2
2
时,四边形AMDN是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•攀枝花)如图,在菱形ABCD中,DE⊥AB于点E,cosA=
35
,BE=4,则tan∠DBE的值是
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在菱形ABCD中,AE⊥BC,垂足为F,EC=1,∠B=30°,求菱形ABCD的周长.

查看答案和解析>>

同步练习册答案