精英家教网 > 初中数学 > 题目详情
精英家教网如图,⊙O在△ABC三边上截得的弦长相等,∠A=70°,则∠BOC=
 
度.
分析:过O作OM⊥AB,ON⊥AC,OP⊥BC,垂足分别为M,N,P,根据三角形内角和定理及角平分线定理即可得到∠BOC的度数.
解答:精英家教网解:过O作OM⊥AB,ON⊥AC,OP⊥BC,垂足分别为M,N,P
∵∠A=70°,∠B+∠C=180°-∠A=110°
∵⊙O在△ABC三边上截得的弦长相等,
∴OM=ON=OP,
∴O是∠B,∠C平分线的交点
∴∠BOC=180°-
1
2
(∠B+∠C)=180°-
1
2
×110°=125°.
点评:本题利用了三角形内角和定理,角的平分线的判定和性质求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,在△ABC中,AB=k•AC,∠BAC+∠DAE=180°,AD=k•AE.
探索△AEB与△ACD面积之间的数量关系,并写出你的解答过程.
说明:如果你反复探索没有解决问题,可以选取(1)或(2)中的条件,选(1)中的条件完成解答满分为7分;选(2)中的条件完成解答满分为5分.
(1)k=1,∠BAC=90°(如图2);
(2)k=1,∠BAC=120°,且B、A、D三点共线(如图3).
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)已知:如图1,在△ABC中,D、F分别是AB、CA上的两个定点,在BC上找一点E,使△DEF的周长最小,请作出相应图形并写出作法;
(2)已知:如图2,在△ABC中,若在上一题的条件改为D是AB上一定点,在BC、CA、上分别找一点E、F使△DEF的周长最小,请作出相应图形并写出作法;
(3)已知:如图3,在△ABC中,是否存在D、E、F分别在AB、BC、CA,且△DEF的周长最小?若存在请作出相应图形并写出作法;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在△ABC中,AB=AC,AB的垂直平分线MN交AB于N,交直线BC于点M.
(1)若∠A=70°,试求出∠NMB的度数;
(2)若∠A=40°时,如图2,再求∠NMB的度数;
(3)综合(1)、(2)小题,若∠A的度数为α(0°<α<90°),试写出∠NMB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE,过D作DG∥AC交BC于G.求证:
(1)△GDF≌△CEF;
(2)△ABC是等腰三角形.

查看答案和解析>>

同步练习册答案