精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,直线y=-
4
3
x+8
分别与x轴交于点A,与y轴交于点B,∠OAB的平分线交y轴于点E,点C在线段AB上,以CA为直径的⊙D经过点E.
(1)判断⊙D与y轴的位置关系,并说明理由;
(2)求点C的坐标.
(1)相切,连接ED,
∵∠OAB的平分线交y轴于点E,
∴∠DAE=∠EAO.
∵∠DEA=∠DAE,
∴∠DEA=∠DAE=∠EAO,
所以EDOA,
所以ED⊥OB;

(2)做CM⊥BO,CF⊥AO,
易得AB=10.设C(m,n),ED=R,
则DE⊥BO,
∴EDAO,
△BED△BOA,
DE
AO
=
BD
AB

R
6
=
10-R
10

解得:R=
15
4

∴△AFC△AOB,
CF
BO
=
AC
AB

CF
8
=
7.5
10

解得:CF=6,
利用勾股定理可求出AF=4.5,
∴OF=1.5,
所以C(
3
2
,6)

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知点A(-6,1),B(-1,5),在x轴上有点C(m,0),在y轴上有点D(0,n),使AB+BD+CD+CA最短.求
m
n
的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,正方形AOCB的边长为6,O为坐标原点,边OC在x轴的正半轴上,边OA在y轴的正半轴上,E是边AB上的一点,直线EC交y轴于F,且S△FAE:S四边形AOCE=1:3.
(1)求出点E的坐标;
(2)求直线EC的函数解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一艘轮船从甲港出发,顺流航行3小时到达乙港,休息1小时后立即返回.一艘快艇在轮船出发2小时后从乙港出发,逆流航行2小时到甲港,立即返回(掉头时间忽略不计).已知轮船在静水中的速度是22千米/时,水流速度是2千米/时.下图表示轮船和快艇距甲港的距离y(千米)与轮船出发时间x(小时)之间的函数关系式,结合图象解答下列问题:
(顺流速度=船在静水中速度+水流速度,逆流速度=船在静水中速度-水流速度)

(1)甲、乙两港口的距离是______千米;快艇在静水中的速度是______千米/时;
(2)求轮船返回时的解析式,写出自变量取值范围;
(3)快艇出发多长时间,轮船和快艇在返回途中相距12千米?(直接写出结果)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:直线y=
1
2
x-6与x轴、y轴分别交于A、B两点:
(1)求A、B两点的坐标;
(2)将该直线沿y轴向上平移6个单位后的图象经过C(-6,a)、D(6,b)两点,分别求a和b的值;
(3)直线y=kx将四边形ABCD的面积分成1:2两部分,求k的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b>a)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图所示.
(1)求a的值;某户居民上月用水8吨,应收水费多少元;
(2)求b的值,并写出当x>10时,y与x之间的函数关系式;
(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

甲、乙两人骑自行车前往A地,他们距A地的路程s(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:
(1)甲、乙两人的速度各是多少?
(2)求出甲距A地的路程s与行驶时间t之间的函数关系式.
(3)在什么时间段内乙比甲离A地更近?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

转炉炼钢产生的棕红色烟尘会污染大气,某装置可通过回收棕红色烟尘中的氧化铁从而降低污染.该装置的氧化铁回收率与其通过的电流有关,现经过试验得到下列数据:
通过电流强度(单位:A)11.71.92.12.4
氧化铁回收率(%)7579888778
如图建立直角坐标系,用横坐标表示通过的电流强度,纵坐标表示氧化铁回收率.

(1)将试验所得数据在上图所给的直角坐标系中用点表示;(注:该图中坐标轴的交点代表点(1,70))
(2)用线段将题(1)所画的点从左到右顺次连接,若用此图象来模拟氧化铁回收率y关于通过电流x的函数关系,试写出该函数在1.7≤x≤2.4时的表达式;
(3)利用题(2)所得函数关系,求氧化铁回收率大于85%时,该装置通过的电流应该控制的范围.(精确到0.1A)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知等腰三角形周长为12,其底边长为y,腰长为x.
(1)写出y关于x的函数解析式及自变量x的取值范围;
(2)在给出的平面直角坐标系中,画出(1)中函数的图象.

查看答案和解析>>

同步练习册答案