分析 (1)根据ASA证明△AQP≌△MNA,即可解答;
(2)利用(1)中的全等三角形的性质得到AN=PQ;然后推出BP为角平分线,利用角平分线的性质得到PC=PQ;从而得到PC=AN.
解答 证明:(1)∵BA⊥AM,MN⊥AC,
∴∠BAM=∠ANM=90°,
∴∠PAQ+∠MAN=∠MAN+∠AMN=90°,
∴∠PAQ=∠AMN,
∵PQ⊥AB MN⊥AC,
∴∠PQA=∠ANM=90°,
在△PQA与△ANM中,
$\left\{\begin{array}{l}{∠PAQ=∠AMN}\\{AQ=MN}\\{∠AQP=∠ANM}\end{array}\right.$,
∴△PQA≌△ANM(ASA).
(2)由(1)知,△PQA≌△ANM,
∴AN=PQ AM=AP,
∴∠AMB=∠APM
∵∠APM=∠BPC,∠BPC+∠PBC=90°,∠AMB+∠ABM=90°
∴∠ABM=∠PBC
∵PQ⊥AB,PC⊥BC
∴PQ=PC(角平分线的性质),
∴PC=AN.
点评 本题是考查了全等三角形的判定与性质、角平分线性质等重要知识点.解题时,需要认真分析题意,以图形的全等为主线寻找解题思路.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com