14£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬AB=7£¬BC=4$\sqrt{2}$£¬¡ÏB=45¡ã£¬¶¯µãP¡¢Qͬʱ³ö·¢£¬µãPÑØA-C-BÔ˶¯£¬ÔÚ±ßACµÄËÙ¶ÈΪÿÃë1¸öµ¥Î»³¤¶È£¬ÔÚ±ßCBµÄËÙ¶ÈΪÿÃë$\sqrt{2}$¸öµ¥Î»³¤¶È£»µãQÑØB-A-BÒÔÿÃë2¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÔ˶¯£¬ÆäÖÐÒ»¸ö¶¯µãµ½´ïÖÕµãʱ£¬ÁíÒ»¸ö¶¯µãҲֹͣÔ˶¯£¬ÔÚÔ˶¯¹ý³ÌÖУ¬¹ýµãP×÷ABµÄ´¹ÏßÓëAB½»ÓÚµãD£¬ÒÔPDΪ±ßÏòÓÉ×÷Õý·½ÐÎPDEF£»¹ýµãQ×÷ABµÄ´¹Ïßl£®ÉèÕý·½ÐÎPDEFÓë¡÷ABCÖصþ²¿·ÖͼÐεÄÃæ»ýΪy£¨Æ½·½µ¥Î»£©£¬Ô˶¯Ê±¼äΪt£¨s£©£®
£¨1£©µ±µãPÔ˶¯µãCʱ£¬PDµÄ³¤¶ÈΪ4£®
£¨2£©ÇóµãDÔÚÖ±ÏßlÉÏʱtµÄÖµ£®
£¨3£©ÇóyÓëtÖ®¼äµÄº¯Êý¹Øϵʽ£®
£¨4£©Ö±½Óд³öÔÚÔ˶¯¹ý³ÌÖÐÖ±Ïß1½«Í¼ÐΡ÷ABCµÄÃæ»ý·ÖΪ9£º16Á½²¿·ÖʱtµÄÖµ£®

·ÖÎö £¨1£©¹ýµãP×÷PD´¹Ö±AB£¬´¹×ãΪD£¬ÓÉÌâÒâ¿ÉÖª£¬¡÷PDBΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬´Ó¶ø¿ÉÇóµÃPDµÄ³¤£»
£¨2£©ÏÈÇóµÃADµÄ³¤£¬È»ºóÒÀ¾Ý¹´¹É¶¨Àí¿ÉÇóµÃACµÄ³¤£¬ÓÉÈñ½ÇÈý½Çº¯ÊýµÄ¶¨ÒåAD=$\frac{3}{5}$t£¬µ±µãQÓÉAµ½Bʱ£®AQ=2£¨t-3.5£©£¬È»ºóÓÉAQ=ADÁз½³ÌÇó½â¼´¿É£»Èçͼ2Ëùʾ£ºµ±µãQÓÉBµ½Aʱ£¬AP=t£¬ÔòAD=$\frac{3}{5}$t£¬BQ=2t£¬ÓÉAD+BQ=7Áз½³ÌÇó½â¼´¿É£»
£¨3£©Èçͼ4Ëùʾ£º¿É·ÖΪÕý·½ÐÎÈ«²¿ÔÚ¡÷ABCµÄÄÚ²¿¡¢Õý·½ÐεÄÒ»²¿·ÖÔÚ¡÷ABCÄÚ²¿¡¢Õý·½ÐεÄÒ»°ëÔÚ¡÷ABCµÄÄÚ²¿ÈýÖÖÇé¿ö½øÐмÆË㣻
£¨4£©·ÖÁ½ÖÖÇéÐ΢ÙÈçͼ7ÖУ¬µ±¡÷BQHµÄÃæ»ý=$\frac{9}{25}$•S¡÷ABCʱ£®¢ÚÈçͼ8ÖУ¬µ±¡÷AQHµÄÃæ»ý=$\frac{9}{25}$•S¡÷ABCʱ£¬·Ö±ð¼ÆËã¼´¿É£®

½â´ð ½â£º£¨1£©Èçͼ1Ëùʾ£º

¡ßPD¡ÍAB£¬
¡à¡ÏPDB=90¡ã£®
ÓÖ¡ß¡ÏDBP=45¡ã£®
¡àPD=BD=BC¡Á$\frac{\sqrt{2}}{2}$=4 $\sqrt{2}$¡Á$\frac{\sqrt{2}}{2}$=4£®
¹Ê´ð°¸Îª£º4£®

£¨2£©Èçͼ1Ëùʾ£º¡ßAB=7£¬BD=4£¬
¡àAD=3£®
¡àAC=5£®
¡àsin¡ÏA=$\frac{4}{5}$£¬cos¡ÏA=$\frac{3}{5}$£®
Èçͼ2Ëùʾ£ºµ±µãPÔÚACÉÏʱ£¬AP=t£¬ÔòPD=$\frac{4}{5}$t£¬AD=$\frac{3}{5}$t£¬BQ=2t£®

¡ßAD+BQ=7£¬
¡à$\frac{3}{5}$t+2t=7£®
½âµÃ£ºt=$\frac{35}{13}$£®
Èçͼ3Ëùʾ£ºµ±µãQÓÉAµ½Bʱ£®AD=$\frac{3}{5}$t£¬AQ=2£¨t-3.5£©£®

¸ù¾ÝÌâÒâµÃ£º$\frac{3}{5}$t=2£¨t-3.5£©£®
½âµÃt=5£®
×ÛÉÏËùÊö£¬µ±t=$\frac{35}{13}$»òt=5ʱ£¬µãDÔÚÖ±ÏßlÉÏ£®

£¨3£©Èçͼ4Ëùʾ£º

¡ßPD=$\frac{4}{5}$t£¬
¡ày=DP2=£¨ $\frac{4}{5}$t£©2=$\frac{16}{25}$t2£®
µ±µãFÇ¡ºÃÔÚBCÉÏʱ£®EF=BB=$\frac{4}{5}$t£®
¡ßAD+DE+EB=7£¬
¡à$\frac{3}{5}$t+$\frac{4}{5}$t+$\frac{4}{5}$t=7£®
½âµÃ£ºt=$\frac{35}{11}$£®
¡àµ±0£¼t¡Ü$\frac{35}{11}$ʱ£¬S=$\frac{16}{25}$t2£®
µ± $\frac{35}{11}$£¼t¡Ü5ʱ£¬Èçͼ5Ëùʾ£®

¡ßAQ=$\frac{3}{5}$t£¬DE=PD=$\frac{4}{5}$t£¬
¡àEB=7-$\frac{7}{5}$t£®
¡ß¡ÏGEB=90¡ã£¬¡ÏB=45¡ã£¬
¡àEG=EB=7-$\frac{7}{5}$t£®
¡àFG=FE-GE=$\frac{11}{5}$t-7£®
¡ày=PD2-$\frac{1}{2}$FH•FG=-$\frac{89}{50}$t2+$\frac{77}{5}$t-$\frac{49}{2}$£®
µ±5£¼t¡Ü7ʱ£¬Èçͼ6Ëùʾ£®

¡ßAD=AC¡Á$\frac{3}{5}$+$\frac{\sqrt{2}}{2}$CP=3+£¨t-5£©=t-2£¬
¡àDB=7-£¨t-2£©=9-t£®
¡ày=$\frac{1}{2}$£¨9-t£©2=$\frac{1}{2}$t2-9t+$\frac{81}{2}$£®
×ÛÉÏËùÊö£¬yÓëtµÄ¹ØϵʽΪS=$\left\{\begin{array}{l}{\frac{16}{25}{t}^{2}}&{£¨0£¼t¡Ü\frac{35}{11}£©}\\{-\frac{89}{50}{t}^{2}+\frac{77}{5}t-\frac{49}{2}}&{£¨\frac{35}{11}£¼t¡Ü5£©}\\{\frac{1}{2}{t}^{2}-9t+\frac{81}{2}}&{£¨5£¼t¡Ü7£©}\end{array}\right.$£®

£¨4£©¢ÙÈçͼ7ÖУ¬µ±¡÷BQHµÄÃæ»ý=$\frac{9}{25}$•S¡÷ABCʱ£¬$\frac{1}{2}$BQ2=$\frac{9}{25}$¡Á14£¬BQ=$\frac{6\sqrt{7}}{5}$£¬¡àt=$\frac{3\sqrt{7}}{5}$»ò7-$\frac{3\sqrt{7}}{5}$ʱ£¬Ö±Ïß1½«¡÷ABCµÄÃæ»ý·ÖΪ9£º16Á½²¿·Ö£®

¢ÚÈçͼ8ÖУ¬µ±¡÷AQHµÄÃæ»ý=$\frac{9}{25}$•S¡÷ABCʱ£¬$\frac{1}{2}$•AQ•$\frac{4}{3}$AQ=$\frac{9}{25}$¡Á14£¬AQ=$\frac{3}{5}$$\sqrt{21}$£¬¡àt=$\frac{3}{10}$$\sqrt{21}$»ò7-$\frac{3}{10}$$\sqrt{21}$ʱ£¬Ö±Ïß1½«¡÷ABCµÄÃæ»ý·ÖΪ9£º16Á½²¿·Ö

×ÛÉÏËùÊö£¬t=$\frac{3\sqrt{7}}{5}$s»ò£¨7-$\frac{3\sqrt{7}}{5}$£©s»ò$\frac{3}{10}$$\sqrt{21}$s»ò£¨7-$\frac{3}{10}$$\sqrt{21}$£©sʱ£¬Ö±Ïß1½«¡÷ABCµÄÃæ»ý·ÖΪ9£º16Á½²¿·Ö£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éµÄÊÇËıßÐεÄ×ÛºÏÓ¦Ó㬽â´ð±¾ÌâÖ÷ÒªÓ¦ÓÃÁËÕý·½ÐεÄÐÔÖÊ¡¢µÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖÊ£¬ÌØÊâÈñ½ÇÈý½Çº¯ÊýÖµ£¬Èñ½ÇÈý½Çº¯ÊýµÄ¶¨Ò壬¸ù¾ÝÌâÒâ»­³öͼÐΣ¬²¢Óú¬tµÄʽ×Ó±íʾÏà¹ØÏ߶εij¤¶ÈÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Èçͼ£¬ÔÚËıßÐÎABCDÖУ¬¡ÏA=90¡ã£¬AB=3£¬AD=$\sqrt{7}$£¬µãM¡¢N·Ö±ðΪÏ߶ÎBC¡¢ABÉϵĶ¯µã£¬µãE¡¢F·Ö±ðΪDM¡¢MNµÄÖе㣬ÔòEF³¤¶ÈµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®2B£®3C£®4D£®$\sqrt{7}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Èçͼ£¬ÒÑÖª£¬¾ØÐÎABCDÖУ¬AB=3cm£¬AD=9cm£¬½«´Ë¾ØÐÎÕÛµþ£¬Ê¹µãBÓëµãDÖغϣ¬ÕÛºÛΪEF£¬ÔòAEµÄ³¤Îª£¨¡¡¡¡£©
A£®3B£®4C£®5D£®$3\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®»¯¼òÇóÖµ£ºa2£¨a+1£©-a£¨a2-2a-1£©£¬ÆäÖÐa=-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®½â²»µÈʽ×飺$\left\{\begin{array}{l}{2£¨x-1£©£¾3}\\{x£¼10-x}\end{array}\right.$£¬²¢°Ñ½â¼¯±íʾÔÚÊýÖáÉÏ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Á½ÕÅ¿í¶È¾ùΪ4µÄ¾ØÐÎֽƬ°´ÈçͼËùʾ·½Ê½·ÅÖÃ
£¨1£©Èçͼ¢Ù£¬ÇóÖ¤£ºËıßÐÎABCDÊÇÁâÐΣ®
£¨2£©Èçͼ¢Ú£¬µãPÔÚBCÉÏ£¬PF¡ÍADÓÚF£¬ÈôSËıßÐÎABCD=16$\sqrt{2}$£¬PB=2£¬i£®Çó¡ÏBADµÄ¶ÈÊý£»ii£®ÇóDFµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ1£¬ÔÚÕý·½ÐÎABCDÄÚ×÷¡ÏEAF=45¡ã£¬AE½»BCÓÚµãE£¬AF½»CDÓÚµãF£¬Á¬½ÓEF£¬¹ýµãA×÷AH¡ÍEF£¬´¹×ãΪH£®

£¨1£©Èçͼ2£¬½«¡÷ADFÈƵãA˳ʱÕëÐýת90¡ãµÃµ½¡÷ABG£®ÇóÖ¤£º¡÷AGE¡Õ¡÷AFE£»
£¨2£©Èçͼ3£¬Á¬½ÓBD½»AEÓÚµãM£¬½»AFÓÚµãN£®Çë̽¾¿²¢²ÂÏ룺Ï߶ÎBM£¬MN£¬NDÖ®¼äÓÐʲôÊýÁ¿¹Øϵ£¿²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÊýÖáÉϵãA¶ÔÓ¦µÄÊýΪa£¬µãB¶ÔÓ¦µÄÊýΪb£¬ÇÒ¶àÏîʽx3y-2xy+5µÄ¶þ´ÎÏîϵÊýΪa£¬³£ÊýÏîΪb£®
£¨1£©Ö±½Óд³ö£ºa=-2£¬b=5£®
£¨2£©ÊýÖáÉϵãA¡¢BÖ®¼äÓÐÒ»µã¶¯P£¬ÈôµãP¶ÔÓ¦µÄÊýΪx£¬ÊÔ»¯¼ò|2x+4|+2|x-5|-|6-x|£»
£¨3£©ÈôµãM´ÓµãA³ö·¢£¬ÒÔÿÃë1¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÑØÊýÖáÏòÓÒÒƶ¯£ºÍ¬Ê±µãN´ÓµãB³ö·¢£¬ÑØÊýÖáÒÔÿÃë2¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÏò×óÒƶ¯£¬µ½´ïAµãºóÁ¢¼´·µ»Ø²¢ÏòÓÒ¼ÌÐøÒƶ¯£¬ÇëÖ±½Óд³ö¾­¹ý2»ò$\frac{8}{3}$»ò6»ò8Ãëºó£¬M¡¢NÁ½µãÏà¾à1¸öµ¥Î»³¤¶È£¬²¢Ñ¡ÔñÒ»ÖÖÇé¿ö¼ÆËã˵Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ1£¬AB=BC=CD=DA£¬¡ÏA=¡ÏB=¡ÏBCD=¡ÏADC=90¡ã£¬µãEÊÇABÉÏÒ»µã£¬µãFÊÇADÑÓ³¤ÏßÉÏÒ»µã£¬ÇÒDF=BE£®
£¨1£©ÇóÖ¤£ºCE=CF£»
£¨2£©ÔÚͼ1ÖУ¬Èç¹ûµãGÔÚADÉÏ£¬ÇÒ¡ÏGCE=45¡ã£¬ÄÇôEG=BE+DGÊÇ·ñ³ÉÁ¢£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©ÔËÓã¨1£©¡¢£¨2£©½â´ðÖÐËù»ýÀ۵ľ­ÑéºÍ֪ʶ£¬Íê³ÉÏÂÌ⣺Èçͼ2£¬AD¡ÎBC£¨BC£¾AD£©£¬¡ÏB=90¡ã£¬AB=BC=12£¬µãEÊÇABÉÏÒ»µã£¬ÇÒ¡ÏDCE=45¡ã£¬BE=4£¬ÇóDEµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸