精英家教网 > 初中数学 > 题目详情
请阅读下面材料:
若A(x1,y0),B(x2,y0) 是抛物线y=ax2+bx+c(a≠0)上不同的两点,证明直线x=
x1+x2
2
为此抛物线的对称轴.
有一种方法证明如下:
①②
证明:∵A(x1,y0),B(x2,y0) 是抛物线y=ax2+bx+c(a≠0)上不同的两点
y0=a
x
2
1
+bx1+c①
y0=a
x
2
2
+bx2+c②
且 x1≠x2
①-②得 a(x12-x22)+b(x1-x2)=0.
∴(x1-x2)[a(x1+x2)+b]=0.
x1+x2=-
b
a

又∵抛物线y=ax2+bx+c(a≠0)的对称轴为x=-
b
2a

∴直线x=
x1+x2
2
为此抛物线的对称轴.
(1)反之,如果M(x1,y1),N(x2,y2) 是抛物线y=ax2+bx+c(a≠0)上不同的两点,直线x=
x1+x2
2
为该抛物线的对称轴,那么自变量取x1,x2时函数值相等吗?写出你的猜想,并参考上述方法写出证明过程;
(2)利用以上结论解答下面问题:
已知二次函数y=x2+bx-1当x=4时的函数值与x=2007时的函数值相等,求x=2012时的函数值.
分析:(1)由题意得出
y0=a
x
2
1
+bx1+c①
y0=a
x
2
2
+bx2+c②
且x1≠x2,再由直线的对称轴得出结论:自变量取x1,x2时函数值相等.
(2)由题意求得b,得出二次函数的解析式为y=x2-2011x-1.再由(1)得,当x=2012时的函数值为2011.
解答:解:(1)结论:自变量取x1,x2时函数值相等.
证明:∵M(x1,y1),N(x2,y2)为抛物线y=ax2+bx+c上不同的两点,
由题意得
y1=ax12+bx1+c  ①
y2=ax22+bx2+c  ②
且x1≠x2
①-②,得y1-y2=a(x12-x22)+b(x1-x2)=(x1-x2)[a(x1+x2)+b].
∵直线x=
x1+x2
2
是抛物线y=ax2+bx+c(a≠0)的对称轴,
x=
x1+x2
2
=-
b
2a

x1+x2=-
b
a

∴y1-y2=(x1-x2)[a(x1+x2)+b]=0,即y1=y2

(2)∵二次函数y=x2+bx-1当x=4时的函数值与x=2007时的函数值相等,
∴由阅读材料可知二次函数y=x2+bx-1的对称轴为直线x=
2011
2

-
b
2
=
2011
2
,b=-2011.
∴二次函数的解析式为y=x2-2011x-1.
2011
2
=
2012+(-1)
2

由(1)知,当x=2012的函数值与x=-1时的函数值相等.
∵当x=-1时的函数值为(-1)2-2011×(-1)-1=2011,
∴当x=2012时的函数值为2011.
点评:本题是一道阅读题,考查了二次函数的性质和图象上点的特点,综合性较强,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

请阅读下面材料:
若A(x1,y0),B(x2,y0) 是抛物线y=ax2+bx+c(a≠0)上不同的两点,证明直线x=
x1+x2
2
为此抛物线的对称轴.
有一种方法证明如下:
①②
证明:∵A(x1,y0),B(x2,y0) 是抛物线y=ax2+bx+c(a≠0)上不同的两点
y0=a
x21
+bx1+c①
y0=a
x22
+bx2+c②
且 x1≠x2
①-②得 a(x12-x22)+b(x1-x2)=0.
∴(x1-x2)[a(x1+x2)+b]=0.
x1+x2=-
b
a

又∵抛物线y=ax2+bx+c(a≠0)的对称轴为x=-
b
2a

∴直线x=
x1+x2
2
为此抛物线的对称轴.
(1)反之,如果M(x1,y1),N(x2,y2) 是抛物线y=ax2+bx+c(a≠0)上不同的两点,直线x=
x1+x2
2
为该抛物线的对称轴,那么自变量取x1,x2时函数值相等吗?写出你的猜想,并参考上述方法写出证明过程;
(2)利用以上结论解答下面问题:
已知二次函数y=x2+bx-1当x=4时的函数值与x=2007时的函数值相等,求x=2012时的函数值.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

请阅读下面材料:
 是抛物线(a ≠ 0)上不同的两点,证明直线为此抛物线的对称轴.
有一种方法证明如下:



 
证明:∵是抛物线(a ≠ 0)上不同的两点,       

     ∴        且
①-②得 .
.
.
又∵ 抛物线(a ≠ 0)的对称轴为
∴ 直线为此抛物线的对称轴.
(1)反之,如果 是抛物线(a ≠ 0)上不同的两点,直线为该抛物线的对称轴,那么自变量取时函数值相等吗?写出你的猜想,并参考上述方法写出证明过程;
(2)利用以上结论解答下面问题:
已知二次函数当x = 4 时的函数值与x = 2007 时的函数值相等,求x = 2012时的函数值.

查看答案和解析>>

科目:初中数学 来源:2011届北京市门头沟区初三第一学期期末数学卷 题型:解答题

请阅读下面材料:
 是抛物线(a ≠ 0)上不同的两点,证明直线为此抛物线的对称轴.
有一种方法证明如下:



 
证明:∵是抛物线(a ≠ 0)上不同的两点,       

     ∴        且
①-②得 .
.
.
又∵ 抛物线(a ≠ 0)的对称轴为
∴ 直线为此抛物线的对称轴.
(1)反之,如果 是抛物线(a ≠ 0)上不同的两点,直线为该抛物线的对称轴,那么自变量取时函数值相等吗?写出你的猜想,并参考上述方法写出证明过程;
(2)利用以上结论解答下面问题:
已知二次函数当x = 4 时的函数值与x = 2007 时的函数值相等,求x = 2012时的函数值.

查看答案和解析>>

科目:初中数学 来源:2010-2011学年江苏省南通市如东县九年级(上)期末数学试卷(解析版) 题型:解答题

请阅读下面材料:
若A(x1,y),B(x2,y) 是抛物线y=ax2+bx+c(a≠0)上不同的两点,证明直线为此抛物线的对称轴.
有一种方法证明如下:
①②
证明:∵A(x1,y),B(x2,y) 是抛物线y=ax2+bx+c(a≠0)上不同的两点
且 x1≠x2
①-②得 a(x12-x22)+b(x1-x2)=0.
∴(x1-x2)[a(x1+x2)+b]=0.

又∵抛物线y=ax2+bx+c(a≠0)的对称轴为
∴直线为此抛物线的对称轴.
(1)反之,如果M(x1,y1),N(x2,y2) 是抛物线y=ax2+bx+c(a≠0)上不同的两点,直线为该抛物线的对称轴,那么自变量取x1,x2时函数值相等吗?写出你的猜想,并参考上述方法写出证明过程;
(2)利用以上结论解答下面问题:
已知二次函数y=x2+bx-1当x=4时的函数值与x=2007时的函数值相等,求x=2012时的函数值.

查看答案和解析>>

同步练习册答案