精英家教网 > 初中数学 > 题目详情

【题目】已知⊙O的半径为13,弦AB//CD,AB=24,CD=10,则AB、CD之间的距离为( )
A.17
B.7
C.12
D.7或17

【答案】D
【解析】①当弦AB和CD在圆心同侧时,如图1,

过点O作OE⊥AB于点E,OF⊥CD于点F ,连接OA,OC ,
∵AB=24cm,CD=10cm,
∴AE=12cm,CF=5cm,
∵OA=OC=13cm,
∴EO=5cm,OF=12cm,
∴EF=12﹣5=7cm;
②当弦AB和CD在圆心异侧时,如图2,

过点O作OE⊥AB于点E,OF⊥CD于点F ,连接OA,OC ,
∵AB=24cm,CD=10cm,
∴AE=12cm,CF=5cm,
∵OA=OC=13cm,
∴EO=5cm,OF=12cm,
∴EF=OF+OE=17cm,
∴AB与CD之间的距离为7cm或17cm.
故答案为:D.
此题分两种情况:①当弦AB和CD在圆心同侧时,如图1,过点O作OE⊥AB于点E,OF⊥CD于点F ,连接OA,OC ,根据垂径定理得出AE=12cm,CF=5cm,根据勾股定理得出EO=5cm,OF=12cm,然后根据EF=OE-OF算出答案;②当弦AB和CD在圆心异侧时,如图2, 过点O作OE⊥AB于点E,OF⊥CD于点F ,连接OA,OC ,根据垂径定理得出AE=12cm,CF=5cm,根据勾股定理得出EO=5cm,OF=12cm,然后根据EF=OE+OF算出答案 .

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列方程变形正确的是( )
A.方程3x﹣2=2x﹣1移项,得3x﹣2x=﹣1﹣2
B.方程3﹣x=2﹣5(x﹣1)去括号,得3﹣x=2﹣5x﹣1
C.方程 可化为3x=6.
D.方程 系数化为1,得x=﹣1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是甲、乙两种机器人根据电脑程序工作时各自工作量y关于工作时间t的函数图象,线段OA表示甲机器人的工作量y1()关于时间x()的函数图象,线段BC表示乙机器人的工作量y2()关于时间a()的函数图象,根据图象信息回答下列填空题.

(1) 甲种机器人比乙种机器人早开始工作___ 小时,甲种机器人每小时的工作量是___吨.

(2)直线BC的表达式为     ,当乙种机器人工作5小时后,它完成的工作量是   吨.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出(

A.直角三角形的面积

B.最大正方形的面积

C.较小两个正方形重叠部分的面积

D.最大正方形与直角三角形的面积和

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点 A y 轴正半轴上点 B x 轴负半轴上,且 AB=2,∠BAO=15°,点 P 是线段OA 上的一个动点,则 PB PA 的最小值为_____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图 1,在 ABCD 中,ACBD 交于点 O,过点 O 的直线 l AB E CD F判断 OE OF 的数量关系: ,并证明;

S四边形AEFD S四边形CFEB (填“>” 或“=” 或“<”).

2)如图 2 是一块“L”形的材料,请你作一条直线 m,使得直线 m 两边的材料的面积相等(保留作图痕迹,不用证明).

3)如图 3,正方形 ABCD 的边长为 2cm,动点 PQ 分别从点 AC 同时出发,以 相同的速度分别沿 ADCB 向终点 DB 移动,当点 P 到达点 D 时,运动停止,过点 C CHPQ,垂足为点 H,连接 BH,则 BH 长的最小值为 cm(保留作图痕迹, 直接填写结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,△ABO的面积为8OAOBBC12,点P的坐标是(a6).

(1) ABC三个顶点的坐标分别为A ),B ),C );

(2) 是否存在点P,使得?若存在,求出满足条件的所有点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学初一年级有350名同学去春游,已知2A型车和1B型车可以载学生100人,1A型车和2B型车可以载学生110.

(1)AB型车每辆可分别载学生多少人?

(2)若计划租用A型车辆,租用B型车辆,请你设计租车方案,能一次运送所有学生,且恰好每辆车都坐满.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的外角,的角平分线交于点.

1)若,则

2)探索的数量关系,并说明理由;

3)若,求的度数.

查看答案和解析>>

同步练习册答案