证明:过P作PG⊥BD于G,
∵BD⊥AC,PF⊥AC,
∴PG∥DF,GD∥PF(垂直于同一条直线的两条直线互相平行),
∴四边形PGDF是平行四边形(两条对边互相平行的四边形是平行四边形);
又∠GDF=90°,
∴四边形PGDF是矩形(有一个角是直角的平行四边形是矩形),
∴PF=GD(矩形的对边相等)①
∵四边形PGDF是矩形
∴PG∥DF,即PG∥AC,
∴∠BPG=∠C(两条直线平行,同位角相等),
又∵AB=AC(已知)
∴∠ABC=∠C(等腰三角形的两底角相等),
∴∠BPG=∠ABC(等量代换)
∵∠PEB=∠BGP=90°(已证),BP=PB
∴△BPE≌△PBG(AAS)
∴PE=BG②
①+②:PE+PF=BG+GD
即PE+PF=BD.
分析:根据已知,过P作PG⊥BD于G,可得矩形PGDF,所以PF=GD①,再由矩形PGDF得PG∥AC,又由AB=AC得∠ABC=∠C,所以∠BPG=∠ABC,再∵∠PEB=∠BGP=90°,BP=PB,则△BPE≌△PBG,所以得
PE=BG②,①+②得出PE+PF=BD.
点评:此题考查的知识点是全等三角形的判定与性质及等腰三角形的性质,关键是作辅助线证矩形PGDF,再证△BPE≌△PBG.