精英家教网 > 初中数学 > 题目详情
如图(1),用形状相同、大小不等的三块直角三角形木板,恰好能拼成如图(2)所示的四边形ABCD、若AE=4,CE=3BE,那么这个四边形的面积是 _________ 
16

试题分析:∵形状相同、大小不等的三块直角三角形木板,
∴△ABE∽△ECD∽△DEA,∠B=∠C=∠AED=90°,
∴BE:CD=AB:EC,
∴四边形ABCD为矩形
∴AB=CD,
∴AB2=BE•EC,
∵CE=3BE,
∴AB=BE,
∵AE=4,
∴BE=2,AB=2
∴BC=BE+CE=4BE=8,
∴这个四边形的面积是S=AB×BC=2×8=16
故填:16
点评:此题考查了直角三角形的性质和相似三角形的性质,同时也考查了勾股定理,解题时要注意认识图形
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知等边△ABC和Rt△DEF按如图所示的位置放置,点B,D重合,且点E、B(D)、C在同一条直线上.其中∠E=90°,∠EDF=30°,AB=DE=,现将△DEF沿直线BC以每秒个单位向右平移,直至E点与C点重合时停止运动,设运动时间为t秒.
(1)试求出在平移过程中,点F落在△ABC的边上时的t值;
(2)试求出在平移过程中△ABC和Rt△DEF重叠部分的面积s与t的函数关系式;
(3)当D与C重合时,点H为直线DF上一动点,现将△DBH绕点D顺时针旋转60°得到△ACK,则是否存在点H使得△BHK的面积为?若存在,试求出CH的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如下图,在直角坐标系的第一象限内,△AOB是边长为2的等边三角形,设直线l:x=t(0≤t≤2)截这个三角形所得位于直线左侧的图形(阴影部分)的面积为f(t),则函数s=f(t)的图象只可能是t大于等于0小于等于1时,函数为Y=3根号x方除以2 图线不应为直线(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的边长为(  )
A.9B.12C.15D.18

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点G是△ABC的重心,BG、CG的延长线分别交AC、AB边于点E、D,则△DEG和△CBG的面积比是(  )

A.1:4        B.1:2         C.1:3         D.2:9

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示是重叠的两个直角三角形.将其中一个直角三角形沿BC方向平移得到△DEF.如果AB=8cm,BE=4cm,DH=3cm,则图中阴影部分面积为        cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知平行四边形ABCD,E是BD上的点,BE:ED=1:2,F、G分别是BC、CD上的点,EF∥CD,EG∥BC,若S平行四边形ABCD=1,则S平行四边形EFCG=         

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

用一个5倍的放大镜去观察一个三角形,对此,四位同学有如下说法:
甲说:三角形的每个内角都扩大到原来的5倍;
乙说:三角形的每条边都扩大到原来的5倍;
丙说:三角形的面积扩大到原来的5倍;
丁说:三角形的周长都扩大到原来的5倍.上述说法中正确的是(  )
A.甲和乙B.乙和丙C.丙和丁D.乙和丁

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知点F在AB上,且AF:BF=1:2,点D是BC延长线上一点,BC:CD=2:1,连接FD与AC交于点N,求FN:ND的值.

查看答案和解析>>

同步练习册答案