精英家教网 > 初中数学 > 题目详情
(2012•临沂)如图,CD与BE互相垂直平分,AD⊥DB,∠BDE=70°,则∠CAD=
70
70
°.
分析:先证明四边形BDEC是菱形,然后求出∠ABD的度数,再利用三角形内角和等于180°求出∠BAD的度数,然后根据轴对称性可得∠BAC=∠BAD,然后求解即可.
解答:解:∵CD与BE互相垂直平分,
∴四边形BDEC是菱形,
∴DB=DE,
∵∠BDE=70°,
∴∠ABD=
180°-70°
2
=55°,
∵AD⊥DB,
∴∠BAD=90°-55°=35°,
根据轴对称性,四边形ACBD关于直线AB成轴对称,
∴∠BAC=∠BAD=35°,
∴∠CAD=∠BAC+∠BAD=35°+35°=70°.
故答案为:70.
点评:本题考查了轴对称的性质,三角形的内角和定理,判断出四边形BDEC是菱形并得到该图象关于直线AB成轴对称是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•临沂)如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•临沂)如图是一个几何体的三视图,则这个几何体的侧面积是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•临沂)如图,若点M是x轴正半轴上任意一点,过点M作PQ∥y轴,分别交函数y=
k1
x
(x>0)和y=
k2
x
(x>0)的图象于点P和Q,连接OP和OQ.则下列结论正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•临沂)如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•临沂)如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.
(1)求点B的坐标;
(2)求经过点A、O、B的抛物线的解析式;
(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案