分析 (1)根据点的坐标判断出OA=OB=OC,从而得出结论;
(2)根据点的坐标求出求出BC,OA,再用三角形面积公式即可;
(3)设出点P坐标,根据平面坐标系中,两点间的距离公式表示出BP,AP,再分三种情况计算即可.
解答 解:∵A(0,2)、B(-2,0)、C(2,0).
∴OB=OC=OA,
∴△ABC是等腰三角形,
∵AO⊥BC,
∴△ABC是等腰直角三角形.
故答案为等腰直角三角形,
(2)∵A(0,2)、B(-2,0)、C(2,0).
∴BC=4,OA=2,
∴S△ABC=$\frac{1}{2}$BC×AO=$\frac{1}{2}$×4×2=4,
∵A(0,2)、B(-2,0),
∴AB=$\sqrt{4+4}$=2$\sqrt{2}$,
(3)设点P(0,m),
∵A(0,2)、B(-2,0),
∴AB=2$\sqrt{2}$,BP=$\sqrt{4+{m}^{2}}$,AP=|m-2|,
∵△PAB是等腰三角形,
∴①当AB=BP时,
∴2$\sqrt{2}$=$\sqrt{4+{m}^{2}}$,
∴m=2(舍)或m=-2,
∴P(0,-2),
②当AB=AP时,
∴2$\sqrt{2}$=|m-2|,
∴m=2+2$\sqrt{2}$或m=2-2$\sqrt{2}$,
∴P(0,2-2$\sqrt{2}$)或P(0,2+2$\sqrt{2}$)
③当AP=BP时,
∴|m-2|=$\sqrt{4+{m}^{2}}$,
∴m=0,
∴P(0,0),
∴P(0,-2)或P(0,2-2$\sqrt{2}$)或P(0,2+2$\sqrt{2}$)或P(0,0).
点评 此题是等腰三角形性质,主要考查了等腰三角形的判定,两点间的距离公式,方程的解法,解本题的关键是分类讨论计算即可.
科目:初中数学 来源: 题型:选择题
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 中位数是31 | B. | 众数是29 | C. | 平均数是30 | D. | 极差是5 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | $\frac{x+3y}{x-y}$ | C. | x-y | D. | x+3y |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 0 | B. | 1 | C. | 3 | D. | 无数个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com