精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD是⊙O的内接四边形,∠ABC=2∠D,连接OA、OB、OC、AC,OB与AC相交于点E,若∠COB=3∠AOB,OC=2 ,则图中阴影部分面积是(结果保留π和根号)

【答案】3π﹣2
【解析】解:∵四边形ABCD是⊙O的内接四边形,

∴∠ABC+∠D=180°,

∵∠ABC=2∠D,

∴∠D+2∠D=180°,

∴∠D=60°,

∴∠AOC=2∠D=120°,

∵OA=OC,

∴∠OAC=∠OCA=30°;

∵∠COB=3∠AOB,

∴∠AOC=∠AOB+3∠AOB=120°,

∴∠AOB=30°,

∴∠COB=∠AOC﹣∠AOB=90°,

在Rt△OCE中,OC=2

∴OE=OCtan∠OCE=2 tan30°=2 × =2,

∴SOEC= OEOC= ×2×2 =2

∴S扇形OBC= =3π,

∴S阴影=S扇形OBC﹣SOEC=3π﹣2

所以答案是:3π﹣2

【考点精析】利用扇形面积计算公式对题目进行判断即可得到答案,需要熟知在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下面的图形中,既是轴对称图形又是中心对称图形的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,对角线ACBD相交于点ODEACAEBD

1)求证:四边形AODE是矩形;

2)若△ABC是边长为2的正三角形,求四边形AODE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,的顶点都在格点上,建立平面直角坐标系,

1)点A的坐标为______,点C的坐标为______

2)将先向右平移2个单位长度,再向下平移3个单位长度,请画出平移后的,并分别写出点A1B1C1的坐标;

3)求的面积.

0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,SDEF:SABF=4:25,则DE:EC=( )

A.2:5
B.2:3
C.3:5
D.3:2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角梯形ABCD中,AD∥BC∠B=90°AG∥CDBC于点G,点EF分别为AGCD的中点,连接DEFG

1)求证:四边形DEGF是平行四边形;

2)当点GBC的中点时,求证:四边形DEGF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=kx+6分别与x轴、y轴交于点E,F,已知点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).

(1)求k的值;

(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出OPA的面积S关于x的函数解析式,并写出自变量x的取值范围.

(3)探究:当点P运动到什么位置时,OPA的面积为,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,P是∠AOB平分线上的一点,PDOAPEOB,垂足分别为DE.求证:

1ODOE

2OPDE的垂直平分线

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的对角线相交于点,且

1)试判断四边形的形状,并说明理由;

2)过,求的长.

查看答案和解析>>

同步练习册答案