【题目】某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下:
x | 30 | 32 | 34 | 36 |
y | 40 | 36 | 32 | 28 |
(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);
(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?
(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?
【答案】
(1)解:设该函数的表达式为y=kx+b,根据题意,得
,
解得: .
故该函数的表达式为y=﹣2x+100
(2)解:根据题意得,
(﹣2x+100)(x﹣30)=150,
解这个方程得,x1=35,x2=45,
故每件商品的销售价定为35元或45元时日利润为150元
(3)解:根据题意,得
w=(﹣2x+100)(x﹣30)
=﹣2x2+160x﹣3000
=﹣2(x﹣40)2+200,
∵a=﹣2<0 则抛物线开口向下,函数有最大值,
即当x=40时,w的值最大,
∴当销售单价为40元时获得利润最大
【解析】(1)根据待定系数法解出解析式即可;(2)根据题意列出方程解答即可;(3)根据题意列出函数解析式,利用函数解析式的最值解答即可.
科目:初中数学 来源: 题型:
【题目】如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A到出口B所走的路线(图中虚线)长为___________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图,矩形OABC的长OA= ,宽OC=1,将△AOC沿AC翻折得△APC.
(1)求∠PCB的度数;
(2)若P,A两点在抛物线y=﹣ x2+bx+c上,求b,c的值,并说明点C在此抛物线上;
(3)(2)中的抛物线与矩形OABC边CB相交于点D,与x轴相交于另外一点E,若点M是x轴上的点,N是y轴上的点,以点E、M、D、N为顶点的四边形是平行四边形,试求点M、N的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,点D、E、F分别在三边上,E是AC的中点,AD、BE、CF交于一点G,BD=2DC,S△GEC=3,S△GDC=4,则△ABC的面积是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的顶点A、B、C都在小正方形的顶点上,像△ABC这样的三角形叫格点三角形,试在方格纸上按下列要求画格点三角形:
(1)将△ABC先向下平移4个单位,再向右平移2个单位得到△A1B1C1;(A1、B1、C1的对应点分别为A、B、C)
(2)线段AC与A1C1的关系 ;
(3)画AB边上的中线CD和高线CE;(利用网格点和直尺画图)
(4)连接CC1,则∠BCC1= °.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一座桥如图,桥下水面宽度AB是20米,高CD是4米.要使高为3米的船通过,则其宽度须不超过多少米.
(1)如图1,若把桥看做是抛物线的一部分,建立如图坐标系. ①求抛物线的解析式; ②要使高为3米的船通过,则其宽度须不超过多少米?
(2)如图2,若把桥看做是圆的一部分. ①求圆的半径;②要使高为3米的船通过,则其宽度须不超过多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列语句中不正确的是( )
A.同一平面内,不相交的两条直线叫做平行线
B.在同一平面内,过一点有且只有一条直线与己知直线垂直
C.如果两个三角形,两条对应边及其夹角相等,那么这两个三角形全等
D.角是轴对称图形,它的角平分线是对称轴
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com