精英家教网 > 初中数学 > 题目详情
如图①,△ABC内接于⊙O,点P是△ABC的内切圆的圆心,AP交边BC于点D,交⊙O于点E,经过点E作⊙O的切线分别交AB、AC延长线于点F、G.
(1)求证:BC∥FG;
(2)探究:PE与DE和AE之间的关系;
(3)当图①中的FE=AB时,如图②,若FB=3,CG=2,求AG的长.

【答案】分析:(1)连接BE.构造了一对内错角,根据三角形的内心是三角形三条角平分线的交点,结合弦切角定理和圆周角定理的推论即可证明内错角相等,从而证明平行;
(2)连接BP.根据三角形的内心的概念以及三角形的外角的性质,可以得到一个等腰三角形,即BE=PE,根据相似三角形的性质可以把要找的线段之间的关系联系起来;
(3)结合(2)的结论首先求得AB的长,再根据平行线分线段成比例定理求得AG的长.
解答:(1)证明:连接BE,
∵点P是△ABC的内心,
∴∠BAD=∠CAD.
又∵FG切⊙O于E,
∴∠BEF=∠BAD.
又∵∠DBE=∠CAD,
∴∠BEF=∠DBE.
∴BC∥FG.

(2)解:连接BP,
则∠ABP=∠CBP.
∵∠BPE=∠BAP+∠ABP=∠PBC+∠EBD,
∴∠BPE=∠PBE.
∴BE=PE.
在△ABE和△BDE中,
∠BAE=∠EBD,∠BED=∠AEB,
∴△ABE∽△BDE.
=
∴BE2=AE•DE.
∴PE2=AE•DE.

(3)解:∵FE2=FB•FA=FB(FB+AB),
而FE=AB,
∴AB2=3(3+AB).
设AB=x,则x2-3x-9=0,
解之得x=
∴AB=(取正值).
由(1)在△AFG中,BC∥FG,

∴AC==×=1+
∴AG=AC+CG=3+
点评:综合运用了三角形的内心的概念、弦切角定理、圆周角定理的推论、相似三角形的判定和性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,锐角△ABC内接于⊙O,若⊙O的半径为6,sinA=
23
,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正三角形ABC内接于圆O,AD⊥BC于点D交圆于点E,动点P在优弧BAC上,且不与点B,点C重合,则∠BPE等于
 

查看答案和解析>>

科目:初中数学 来源: 题型:

29、如图,Rt△ABC内接于⊙O,∠A=30°,延长斜边AB到D,使BD等于⊙O半径,求证:DC是⊙O切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南通)如图.Rt△ABC内接于⊙O,BC为直径,AB=4,AC=3,D是
AB
的中点,CD与AB的交点为E,则
CE
DE
等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•杭州一模)如图1,△ABC内接于半径为4cm的⊙O,AB为直径,
BC
长为
3
cm


(1)计算∠ABC的度数;
(2)将与△ABC全等的△FED如图2摆放,使两个三角形的对应边DF与AC有一部分重叠,△FED的最长边EF恰好经过
AB
的中点M.求证:AF=AB;
(3)设图2中以A、C、M为顶点的三角形面积为S,求出S的值.

查看答案和解析>>

同步练习册答案