精英家教网 > 初中数学 > 题目详情

【题目】如图,在RtABC中,∠C=90°,BC=6cmAC=8cm,点P从点C开始沿射线CA方向以1cm/s的速度运动;同时,点Q也从点C开始沿射线CB方向以3cm/s的速度运动.

(1)几秒后PCQ的面积为3cm2?此时PQ的长是多少?(结果用最简二次根式表示)

(2)几秒后以ABPQ为顶点的四边形的面积为22cm2

【答案】(1)秒后PCQ的面积为3平方厘米,此时PQ的长是

(2)经过秒或秒,以ABPQ为顶点的四边形的面积为22cm2

【解析】试题分析:(1)根据题意C=90°,可以得出PCQ的面积为×PC×CQ,设出t秒后满足要求,则根据PCQ的面积是3 cm2列出等量关系求出t的值即可.

2)根据四边形ABQP的面积=SΔABC-SΔPCQ,列式计算即可.

试题解析:(1)设t秒后PCQ的面积为3平方厘米,

则有PCt cmCQ3t cm

依题意,得: t×3t3

(舍去)

由勾股定理,得:PQ

答: 秒后PCQ的面积为3平方厘米,此时PQ的长是

2 P在线段AC上,Q在线段BC上时,

SAPQB= SABCSPQC

(舍去)

P在线段AC上,Q在线段BC延长线上时,

SAPBQ= SAQCSPBC=

,得

P在线段AC的延长线上,Q在线段BC延长线上时,

SABQP= SPQCSABC=

(不符合题意,舍去),(或者得 ,都不符合题意,舍去)

综上:

答,经过秒或秒,以ABPQ为顶点的四边形的面积为22cm2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某公司投资1200万元购买了一条新生产线生产新产品.根据市场调研,生产每件产品需要成本50元,该产品进入市场后不得低于80元/件且不得超过160元/件,该产品销售量y(万件)与产品售价x(元)之间的关系如图所示.
(1)求y与x之间的函数关系式,并写出x的取值范围;
(2)第一年公司是盈利还是亏损?求出当盈利最大或亏损最小时的产品售价;
(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,公司第二年重新确定产品售价,能否使前两年盈利总额达790万元?若能,求出第二年产品售价;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某区在实施居民用水管理前,随机调查了部分家庭(单位:户)去年的月均用水量(单位:t),并将调查数据进行整理,绘制出如下不完整的统计图表:

请解答以下问题:

(1)把上面的频数分布表和频数分布直方图补充完整;

(2)若该小区有2000户家庭,根据此次随机抽查的数据估计,该小区月均用水量不低于20t的家庭有多少户?

(3)为了鼓励节约用水,要确定一个月均用水量的标准,超出该标准的部分按1.5倍价格收费,若要使68%的家庭水费支出不受影响,那么,你觉得家庭月均用水量应定为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图的直角坐标系中,画出函数y=-2x+3的图象,并结合图象回答下列问题:

(1)y的值随x值的增大而 (填增大减小”);

(2)图象与x轴的交点坐标是 ;图象与y轴的交点坐标是

(3)当x 时,y <0 ;

(4)直线y=-2x+3与两坐标轴所围成的三角形的面积是: .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BE平分

BC平行吗?请说明理由;

EF的位置关系如何?为什么?

解:理由如下:

平角的定义

已知

____________

______

EF的位置关系是______

平分已知

角平分线的定义

已知

______等量代换

____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某化妆品店老板到厂家选购AB两种品牌的化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.

AB两种品牌的化妆品每套进价分别为多少元?

若销售1A品牌的化妆品可获利30元,销售1B品牌的化妆品可获利20元,根据市场需求,化妆品店老板决定,购进B品牌化妆品的数量比购进A品牌化妆品数量的2倍还多4套,且B品牌化妆品最多可购进40套,这样化妆品全部售出后,可使总的获利不少于1200元,问有几种进货方案?如何进货?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>0)与y轴的交点为A,与x轴的交点分别为B(x1 , 0),C(x2 , 0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.

(1)求抛物线的解析式;
(2)当0<t≤8时,求△APC面积的最大值;
(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC的中线BD、CE相交于点O、M、N分别为OB、OC的中点.

(1)求证:MD和NE互相平分;

(2)若BD⊥AC,EM=2,OD+CD=7,求△OCB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在中,的垂直平分线交于点,交于点的垂直平分线交于点,交于点,连接,求证:的周长;21.

如图所示,在中,若的垂直平分线交于点,交于点的垂直平分线交于点,交于点,连接,试判断的形状,并证明你的结论.

如图所示,在中,若的垂直平分线交于点,交于点的垂直平分线交于点,交于点,连接,若,求的长.

查看答案和解析>>

同步练习册答案