【题目】小玲和弟弟小东分别从家和图书馆同时当发,沿同一条路相向而行,小玲开始跑步,中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数函象如图所示.
(1)家与图书馆之间的路程为 m,小东从图书馆到家所用的时间为 .
(2)求小玲步行时y与x之间的函数关系式
(3)求两人相遇的时间.
【答案】(1)4000,min;(2)y=100x+1000;(3)8min.
【解析】
(1)由图象即可得出家与图书馆之间的路程,再利用时间=路程÷速度即可得到小东从图书馆到家所用的时间;
(2)根据题意可知AB段为小玲步行段,y与x之间满足一次函数,用待定系数法即可求出函数关系式;
(3)由图象可知两人相遇在小玲跑步段,利用路程和=速度和×相遇时间,即可得出答案.
解:(1)由图可得,
家与图书馆之间的路程为4000m,小东从图书馆到家所用的时间为:=min,
故答案为:4000,min;
(2)设小玲步行时y与x之间的函数关系式是y=kx+b,
将 代入函数关系式中,得
解得
∴小玲步行时y与x之间的函数关系式是y=100x+1000;
(3)当0≤x≤10时,小玲的速度为2000÷10=200(m/min),
设相遇时间为x,
则200x+300x=4000,得x=8,
∵8<10,
∴两人在第8min相遇,
答:两人相遇的时间是第8min.
科目:初中数学 来源: 题型:
【题目】等腰Rt△ACB,∠ACB=90°,AC=BC,点A、C分别在x轴、y轴的正半轴上.
(1)如图1,求证:∠BCO=∠CAO
(2)如图2,若OA=5,OC=2,求B点的坐标
(3)如图3,点C(0,3),Q、A两点均在x轴上,且S△CQA=18.分别以AC、CQ为腰在第一、第二象限作等腰Rt△CAN、等腰Rt△QCM,连接MN交y轴于P点,OP的长度是否发生改变?若不变,求出OP的值;若变化,求OP的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,且点E在线段AD上,若AF=4,∠F=60°.
(1)指出旋转中心和旋转角度;
(2)求DE的长度和∠EBD的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,函数y=(k≠0,x>0)的图象经过点A(3,4),直线AC与x轴交于点C(6,0),过点C作x轴的垂线BC交函数y=(k≠0,x>0)的图象于点B.
(1)求k的值及点B的坐标
(2)在平面内存在点D,使得以A、B、C、D为顶点的四边形是平行四边形,直接写出符合条件的所有点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题满分10分)
由于雾霾天气频发,市场上防护口罩出现热销.某药店准备购进一批口罩,已知1个A型口罩和3个B型口罩共需26元;3个A型口罩和2个B型口罩共需29元.
⑴ 求一个A型口罩和一个B型口罩的售价各是多少元?
⑵ 药店准备购进这两种型号的口罩共50个,其中A型口罩数量不少于35个,且不多于B型口罩的3倍,有哪几种购买方案,哪种方案最省钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△ABC中,AB=AC,∠BAC=90°,CD平分∠ACB,BE⊥CD,垂足E在CD的延长线上.请解答下列问题:
(1)图中与∠DBE相等的角有: ;
(2)直接写出BE和CD的数量关系;
(3)若△ABC的形状、大小不变,直角三角形BEC变为图2中直角三角形BED,∠E=90°,且∠EDB=∠C,DE与AB相交于点F.试探究线段BE与FD的数量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
(1)当直线MN绕点C旋转到图(1)的位置时,显然有:DE=AD+BE;请证明.
(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD-BE;
(3)当直线MN绕点C旋转到图(3)的位置时,试问(2)中DE、AD、BE的关系还成立吗?若成立,请证明;若不成立,它们又具有怎样的等量关系?请证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)如图,经过点C(0,﹣4)的抛物线()与x轴相交于A(﹣2,0),B两点.
(1)a 0, 0(填“>”或“<”);
(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;
(3)在(2)的条件下,连接AC,E是抛物线上一动点,过点E作AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com