精英家教网 > 初中数学 > 题目详情

【题目】某房间窗户如图所示,其中上方的装饰物由两个四分之一圆和一个半圆组成(它们的半径相同):


1)装饰物所占的面积是多少?
2)窗户中能射进阳光的部分的面积是多少?
3)计算当a=6b=4时,窗户中能射进阳光的部分的面积.(π取3.14

【答案】1πb2;(2ab-πb2;(320.86

【解析】

1)半径相同的两个四分之一圆和一个半圆正好构成了一个整圆,所求装饰物所占的面积正好是一个整圆的面积;
2)能射进阳光的部分的面积=窗户面积-装饰物面积;
3)把a=6b=4代入(2)的结果计算即可求解.

1)装饰物的面积正好等于一个半径为的圆的面积,
π2=πb2
2)窗户中能射进阳光的部分的面积是ab-πb2
3)当a=6b=4时,ab-πb2=6×4-×3.14×42=24-3.14=20.86

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形纸片ABCD中,AB=3,BC=2,沿对角线AC剪开(如图①);固定ADC,把ABC沿AD方向平移(如图②),当两个三角形重叠部分的面积最大时,移动的距离AA等于(

A. 1 B. 1.5 C. 2 D. 0.81.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形纸片ABCD中,∠B=D=90°,点E,F分别在边BC,CD上,将AB,AD分别沿AE,AF折叠,点B,D恰好都和点G重合,∠EAF=45°.

(1)求证:四边形ABCD是正方形;

(2)求证:三角形ECF的周长是四边形ABCD周长的一半;

(3)若EC=FC=1,求AB的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】无锡水蜜桃享誉海内外,老王用3000元购进了一批水蜜桃.第一天,很快以比进价高40% 的价格卖出150千克.第二天,他发现剩余的水蜜桃卖相已不太好,于是果断地以比进价低20%的价格将剩余的水蜜桃全部售出,本次生意老王一共获利750元.

(1)根据以上信息,请你编制一个问题,并给予解答;

(2)老王用3000元按第一次的价格又购进了一批水蜜桃.第一天同样以比进价高40% 的价格卖出150千克,第二天,老王把卖相不好的水蜜桃挑出,单独打折销售,售价为10/千克,结果很快被一抢而空,其余的仍按第一天的价格销售,且当天全部售完.若老王这次至少获利1100元,请问打折销售的水蜜桃最多多少千克?(精确到1千克.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象与x轴相交于A3,0、B1,0两点,与y轴相交于点C0,3,点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D

1求D点坐标;

2求二次函数的解析式;

3根据图象直接写出使一次函数值小于二次函数值的x的取值范围

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,这是某市部分简图,为了确定各建筑物的位置:

1)请你以火车站为原点建立平面直角坐标系;

2)写出市场、超市的坐标;

3)请将体育场、宾馆和火车站看作三点用线段连起来,得,然后将此三角形向下平移4个单位长度,再画出平移后的

4)根据坐标情况,求的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,点EF分别在边BCCD上,且∠EAF=CEF=45°.

(1)ADF绕着点A顺时针旋转90°,得到ABG(如图①),求证:AEG≌△AEF

(2)若直线EFABAD的延长线分别交于点MN(如图②),求证:EF2=ME2+NF2

(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EFBEDF之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现在电器进入销售旺季,福清某电器超市销售每台进价分别为元、元的两种型号的电器,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)

销售时段

销售数量

销售收入

种型号

种型号

第一周

第二周

1)求两种型号的电器销售单价;

2)若超市准备用不超过元的金额再采购这种型号的电器共台,销售完这台电器实现利润超过元的目标,请给出相应的采购方案;并求出利润的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将连续的奇数 1,3,5,7,9,…,排成如图的数阵.

(1)十字框中的五个数的和与中间数 15 有什么关系?

(2)设中间数为 a,用式子表示十字框中五个数之和;

(3)十字框中五个数之和能等于 2 005 吗?若能,请写出这五个数;若不能, 说明理由.

查看答案和解析>>

同步练习册答案