精英家教网 > 初中数学 > 题目详情
1.一个几何体的三视图如图所示,则这个几何体的侧面积是(  )
A.B.C.4D.π

分析 首先判断该几何体的形状,然后根据其尺寸求得其侧面积即可.

解答 解:观察三视图发现该几何体为圆锥,其底面直径为2cm,母线长为4cm,
所以其侧面积为:$\frac{1}{2}$×2π×4=4π,
故选A.

点评 本题考查了由三视图判断几何体,圆锥的有关计算,由该三视图中的数据确定圆锥的底面直径和母线长是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源:2016-2017学年贵州省七年级下学期第一次月考数学试卷(解析版) 题型:单选题

某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是( )

A. 第一次左拐30°,第二次右拐30°

B. 第一次右拐50°,第二次左拐130°

C. 第一次右拐50°,第二次右拐130°

D. 第一次向左拐50°,第二次向左拐120°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.在正方形ABCD中,点P在射线AB上,连结PC,PD,M,N分别为AB,PC中点,连结MN交PD于点Q.
(1)如图1,当点P与点B重合时,求∠QMB的度数;
(2)当点P在线段AB的延长线上时.
①依题意补全图2
②小聪通过观察、实验、提出猜想:在点P运动过程中,始终有QP=QM.
小聪把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:
想法1延长BA到点E,使AE=PB.要证QP=QM,只需证△PDA≌△ECB.
想法2:取PD中点E,连结NE,EA.要证QP=QM只需证四边形NEAM是平行四边形.
想 法3:过N作NE∥CB交PB于点E,要证QP=QM,只要证明△NEM∽△DAP.

请你参考上面的想法,帮助小聪证明QP=QM.(一种方法即可)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,AB为⊙O的直径,E是⊙O外一点,过点E作⊙O的两条切线ED、EB,切点分别为点D,B,连接AD并延长交BE延长线于点C,连接OE.
(1)试判断OE与AC的关系,并说明理由;
(2)填空:
①当∠BAC=45°时,四边形ODEB是正方形.
②当∠BAC=30°时,$\frac{AD}{DE}$的值为4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在平面直角坐标系xOy中,点A、B的坐标分别为(0,3)、(7,0),点C在第一象限,AC∥x轴,∠OBC=45°.
(1)求点C的坐标;
(2)点D在线段AC上,CD=1,点E的坐标为(n,0),在直线DE的右侧作∠DEG=45°,直线EG与直线BC相交于点F,设BF=m,当n<7且n≠0时,求m关于n的函数解析式,并直接写出n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为(  )
A.30°B.32°C.42°D.58°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.解不等式组:$\left\{\begin{array}{l}{2x≤3(x+2)-5①}\\{\frac{1-2x}{4}+\frac{1}{5}<0②}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.
(1)点D从B向C运动时,∠BDA逐渐变小(填“大”或“小”);设∠BAD=x°,∠BDA=y°,求y与x的函数关系式;
(2)当DC的长度是多少时,△ABD≌△DCE,请说明理由;
(3)在点D的运动过程中,△ADE的形状也在改变,当∠BDA等于多少度时,△ADE是等腰三角形?判断并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.计算:
(1)$\root{3}{\frac{1}{8}}$+$\sqrt{(-3)^{2}}$-$\frac{5}{2}$$\root{3}{-\frac{1}{125}}$
(2)|$\sqrt{3}$-$\sqrt{2}$|+|$\sqrt{3}$-2|-|$\sqrt{2}$-1|

查看答案和解析>>

同步练习册答案