如图是银川市6月1日至15日的空气质量指数趋势折线统计图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气质量重度污染.某人随机选择6月1日至6月14日中的某一天到达银川,共停留2天.
(1)求此人到达当天空气质量优良的天数;
(2)求此人在银川停留2天期间只有一天空气质量是重度污染的概率;
(3)由折线统计图判断从哪天开始连续三天的空气质量指数方差最大(只写结论).
解:(1)此人到达当天空气质量优良的有:第1天、第2天、第3天、第7天、第12天,共5天;
(2).此人在银川停留两天的空气质量指数是:(86,25),(25,57),(57,143),(143,220),(220,158),(158,40),
(40,217),(217,160),(160,128),(128,167),(167,75),(75,106),(106,180),(180,175),
共14个停留时间段,期间只有一天空气质量重度污染的有:第4天到、第5天到、第7天到及第8天到.
因此,P(在银川停留期间只有一天空气质量重度污染)=;
(3)根据折线图可得从第5天开始的第5天、第6天、第7天连续三天的空气质量指数方差最大.
科目:初中数学 来源: 题型:
如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形的最小圆面的半径是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
在Rt△ABC中,∠C=90°,P是BC边上不同于B、C的一动点,过P作PQ⊥AB,垂足为Q,连接AP.
(1)试说明不论点P在BC边上何处时,都有△PBQ与△ABC相似;
(2)若AC=3,BC=4,当BP为何值时,△AQP面积最大,并求出最大值;
(3)在Rt△ABC中,两条直角边BC、AC满足关系式BC=λAC,是否存在一个λ的值,使Rt△AQP既与Rt△ACP全等,也与Rt△BQP全等.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为( )
A. 100米 B. 50米 C. 米 D. 50米
查看答案和解析>>
科目:初中数学 来源: 题型:
已知两条平行线l1、l2之间的距离为6,截线CD分别交l1、l2于C、D两点,一直角的顶点P在线段CD上运动(点P不与点C、D重合),直角的两边分别交l1、l2与A、B两点.
(1)操作发现
如图1,过点P作直线l3∥l1,作PE⊥l1,点E是垂足,过点B作BF⊥l3,点F是垂足.此时,小明认为△PEA∽△PFB,你同意吗?为什么?
(2)猜想论证
将直角∠APB从图1的位置开始,绕点P顺时针旋转,在这一过程中,试观察、猜想:当AE满足什么条件时,以点P、A、B为顶点的三角形是等腰三角形?在图2中画出图形,证明你的猜想.
(3)延伸探究
在(2)的条件下,当截线CD与直线l1所夹的钝角为150°时,设CP=x,试探究:是否存在实数x,使△PAB的边AB的长为4?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com