精英家教网 > 初中数学 > 题目详情
已知:如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交精英家教网BD于点G,交AB于点F.
(1)求证:AC与⊙O相切;
(2)当BD=2,sinC=
12
时,求⊙O的半径.
分析:连接OE,通过证明OE∥BD证明OE⊥AC,得出AC与⊙O相切;通过证明∠C=∠A,解直角三角形AOE求OE的长,即半径的长度.
解答:精英家教网(1)证明:如图,连接OE.
∵AB=BC且D是BC中点
∴BD⊥AC
∵BE平分∠ABD
∴∠ABE=∠DBE
∵OB=OE
∴∠OBE=∠OEB
∴∠OEB=∠DBE
∴OE∥BD
∴OE⊥AC
∴AC与⊙O相切.

(2)解:∵BD=2,sinC=
1
2
,BD⊥AC
∴BC=4
∴AB=4
设⊙O 的半径为r,则AO=4-r
∵AB=BC
∴∠C=∠A
∴sinA=sinC=
1
2

∵AC与⊙O相切于点E,
∴OE⊥AC
∴sinA=
r
4-r
=
1
2

∴r=
4
3
点评:考查了切线的判定、圆的性质以及解直角三角形的简单应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•启东市一模)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和π)《根据2011江苏扬州市中考试题改编》

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.
(1)作出边AC的垂直平分线DE;
(2)当AE=BC时,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在AB、AC上各取一点E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源:专项题 题型:证明题

已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,
           ∠1=∠2;
求证:∠B=∠C

查看答案和解析>>

同步练习册答案