精英家教网 > 初中数学 > 题目详情
15.如图,四边形ABCD中,∠A=90°,∠B=120°,∠D=30°,AB=2,BC=3,则CD=7.

分析 先延长AB、DC交于E,根据已知证出△EBC是等边三角形,得出CE=BE=BC=3,求出AE=AB+BE=5,由直角三角形的性质得出DE=2AE=10,即可得出结果.

解答 解:延长AB、DC交于E,
∵∠D=30°,∠A=90°,
∴∠E=60°,
∵∠ABC=120°,
∴∠EBC=60°,
∴△EBC是等边三角形,
∴CE=BE=BC=3,
∴AE=AB+BE=5,
∴DE=2AE=10,
∴CD=DE-CE=10-3=7;
故答案为:7.

点评 此题考查了含30度角的直角三角形的性质、等边三角形的判定与性质;熟练掌握含30°角的直角三角形的性质,证明三角形是等边三角形是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.如图,已知抛物线y=-$\frac{1}{3}$x2+bx+c经过点A(5,$\frac{2}{3}$)、点B(9,-10),与y轴交于点C.

(1)求抛物线对应的函数表达式;
(2)过点P且与y轴平行的直线l与直线BC交于点E,当四边形AECP的面积最大时,求点P的坐标;
(3)当∠PCB=90°时,作∠PCB的角平分线,交抛物线于点F.
①求点P和点F的坐标;
②在直线CF上是否存在点Q,使得以F、P、Q为顶点的三角形与△BCF相似,若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.请写出一个图象过(2,3)和(3,2)两点的函数解析式y=$\frac{6}{x}$(答案不唯一).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,已知∠MON=30°,AB⊥ON,垂足为点A,点B在射线OM上,AB=1cm,在射线ON上截取OA1=OB,过A1作A1B1∥AB,A1B1交射线OM于点B1,再在射线ON上截取OA2=OB1,过点A2作A2B2∥AB,A2B2交射线OM于点B2;…依次进行下去,则A1B1线段的长度为$\frac{2\sqrt{3}}{3}$,A6B6线段的长度为${2}^{6}(\frac{\sqrt{3}}{3})^{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.甲乙两班人数相等,甲班女生是乙班男生$\frac{1}{6}$,乙班女生是甲班男生$\frac{1}{7}$,则甲班男生与乙班男生的比是35:36.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.解方程:2x2-4x-3=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知,x1,x2是方程x2-2x-3=0的两个根,
(1)求$\frac{{x}_{2}}{{x}_{1}}$+$\frac{{x}_{1}}{{x}_{2}}$的值;
(2)求一个新的一元二次方程,使它的两根分别是原方程两根的相反数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,已知A,B两点的坐标分别为(2$\sqrt{3}$,0),(0,2),P是△AOB外接圆上一点,且∠AOP=45°,则P点到x轴的距离为(  )
A.$\sqrt{6}$B.$2\sqrt{2}$C.$\sqrt{6}+\sqrt{2}$D.$1+\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.有理数$\frac{1}{3}$的相反数是(  )
A.$\frac{1}{3}$B.3C.-3D.-$\frac{1}{3}$

查看答案和解析>>

同步练习册答案