精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,CD是AB边上的中线,E是CD的中点,过点C作AB的平行线交AE的延长线于F,连结BF.

(1)求证:CF=BD;
(2)若CA=CB,∠ACB=90°,试判断四边形CDBF的形状,并证明你的结论.
(1)详见解析 ;(2)四边形CDBF是正方形,证明详见解析.

试题分析:(1)首先证明△ADE≌△FCE,根据全等三角形的性质得:AD=CF,又AD=BD,所以CF=BD.(2)由(1)知AD=CF,从而得到:CF与DB平行且相等.再根据平行四边形的判定定理得四边形CDBF是平行四边形,再根据等腰三角形“三线合一”的性质,可得:CD=BD,∠CDB=90°,根据“一组邻边相等的平行四边形是菱形”可知CDBF是菱形,再根据“有一个角是直角的平行四边形是矩形”可知四边形CDBF是矩形,所以它是正方形.
试题解析:(1)∵AB∥CF
∴∠EAD=∠EFC, ∠ADE=∠FCE,
∵DE=CE
∴△ADE≌FCE
∴AD=CF
∵AD=BD
∴BD=CF
(2)由(1)知BD=CF
又∵BD∥CF
∴四边形CDBF是平行四边形
∵CA=CB,AD=BD
∴∠CDB=90°,CD=BD=AD
∴四边形CDBF是正方形.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD、BEFG均为正方形.

(1)如图1,连接AG、CE,试判断AG和CE的数量关系和位置关系并证明.
(2)将正方形BEFG绕点B顺时针旋转β角(0°<β<180°),如图2,连接AG、CE相交于点M,连接MB,当角β发生变化时,∠EMB的度数是否发生变化?若不变化,求出∠EMB的度数;若发生变化,请说明理由.
(3)在(2)的条件下,过点A作AN⊥MB交MB的延长线于点N,请直接写出线段CM与BN的数量关系      .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

探究:已知平行四边形ABCD的面积为100,M是AB所在直线上的一点
(1)如图1:当点M与B重合时,S△DCM =________;

(2)如图2:当点M与B与A均不重合时,S△DCM =________

(3)如图3:当点M在AB(或BA)的延长线上时,S△DCM =________

推广:平行四边形ABCD的面积为a,E、F为两边DC、BC延长线上两点,连接DF、AF、AE、BE.求出图4中阴影部分的面积,并简要说明理由

应用:如图5是某广场的一平行四边形绿地ABCD,PQ、MN分别平行DC、AD,PQ、MN交于O点,其中S四边形AM OP=300m2,S四边形MBQO=400m2,S四边形NCQO=700m2.现进行绿地改造,在绿地内部做一个三角形区域MQD,连接DM、QD、QM,(图中阴影部分)种植不同的花草,求三角形DMQ区域的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,小红用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当小红折叠时,顶点D落在BC边上的点F处(折痕为AE).求EC的长度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,四边形ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件        ,使四边形ABCD成为菱形(只需添加一个即可)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为               

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,则AE的长为_________

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足            条件时,四边形EFGH是矩形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,?ABCD中,点E、F分别在AD、BC上,且AE=CF.求证:BE=DF.

查看答案和解析>>

同步练习册答案