精英家教网 > 初中数学 > 题目详情
(2012•湖州)已知:如图,在?ABCD中,点F在AB的延长线上,且BF=AB,连接FD,交BC于点E.
(1)说明△DCE≌△FBE的理由;
(2)若EC=3,求AD的长.
分析:(1)由四边形ABCD是平行四边形,根据平行四边形的对边平行且相等,即可得AB=DC,AB∥DC,继而可求得∠CDE=∠F,又由BF=AB,即可利用AAS,判定△DCE≌△FBE;
(2)由(1),可得BE=EC,即可求得BC的长,又由平行四边形的对边相等,即可求得AD的长.
解答:(1)证明:∵四边形ABCD是平行四边形,
∴AB=DC,AB∥DC,1分
∴∠CDE=∠F,1分
又∵BF=AB,1分
∴DC=FB,
在△DCE和△FBE中,
∠CDE=∠F
∠CED=∠BEF
DC=FB
             
∴△DCE≌△FBE(AAS)                     

(2)解:∵△DCE≌△FBE,
∴EB=EC,
∵EC=3,
∴BC=2EB=6,1分
∵四边形ABCD是平行四边形,
∴AD=BC,
∴AD=6.
点评:此题考查了平行四边形的性质与全等三角形的判定与性质.此题难度适中,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•湖州)如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•湖州一模)已知某函数关系式中的x与y满足下表(x是自变量),则此函数关系式为
x -3 -2 -1 1 2 3
y 1 1.5 3 -3 -1.5 -1
(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•湖州一模)已知
x-2
3
4-x
4
的值相等时,x=
20
7
20
7

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•湖州)已知,如图,在梯形ABCD中,AD∥BC,DA=DC,以点D为圆心,DA长为半径的⊙D与AB相切于A,与BC交于点F,过点D作DE⊥BC,垂足为E.
(1)求证:四边形ABED为矩形;
(2)若AB=4,
AD
BC
=
3
4
,求CF的长.

查看答案和解析>>

同步练习册答案