精英家教网 > 初中数学 > 题目详情
2.如图,AB是半圆的直径,C、D是$\widehat{AB}$的三分之一点,若半径为R,求阴影部分的面积.

分析 首先连OC、OD,根据弧相等则弧所对的圆心角相等得到∠AOC=∠COD=∠BOD=$\frac{1}{3}$×180°=60°,则△OCD为等边三角形,即有∠OCD=60°,所以CD∥AB,于是得到S△ECD=S△OCD,可把求阴影部分的面积的问题转化为求扇形OCD的面积,然后根据扇形的面积公式计算即可.

解答 解:如图,连接OC、OD.
∵AB为半圆的直径,点C、D三等分半圆
∴∠AOC=∠COD=∠BOD=$\frac{1}{3}$×180°=60°,
而OC=OD,
∴△OCD为等边三角形,
∴∠OCD=60°,
∴CD∥AB,
∴S△BCD=S△OCD
∴S阴影=S扇形OCD=$\frac{60π×{R}^{2}}{360}$=$\frac{π{R}^{2}}{6}$.

点评 本题考查了扇形的面积公式:S=$\frac{nπ{R}^{2}}{360}$(n为扇形的圆心角的度数,R为圆的半径)以及弧与圆心角之间的关系以及等边三角形的性质,根据已知得出阴影部分的面积=S扇形OCD是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.如图,在△ABC中,点D为BC上一点,过A,B,D三点作⊙O,AE是⊙O的直径,AC是⊙O的切线,AD=DC,连结DE.
(1)求证:AB=AC;
(2)若sinE=$\frac{1}{3}$,AC=4$\sqrt{2}$a,求△ADE的周长(用含a的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.计算:7+(-4)=3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.若一个正数的平方根为2x+1和2-3x,求x及这个正数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.计算:-14-(2016-π)0+$\root{3}{-27}$-3tan60°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.(1)在实数范围内因式分解:2x4-8;
(2)计算:(3$\sqrt{2}$$+\sqrt{48}$)($\sqrt{18}$$-4\sqrt{3}$)-($\sqrt{2}+\sqrt{3}$)2
(3)用配方法解方程:3x2+8x-3=0;
(4)解方程:(x-2)(x-4)=12.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,△ABE是⊙O的内接三角形,AB为直径,过点B的切线与AE的延长线交于点C,D是BC的中点,连接DE,连接CO,线段CO的延长线交⊙O于F,FG⊥AB于G.
(1)求证:DE是⊙O的切线;
(2)若AE=4,BE=2,求AG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,边长为2的正方形MNEF的四个顶点分在大圆O上,小圆O与正方形各边都相切,AB与CD是大圆O的直径,AB⊥CD,CD⊥MN,小明随意向水平放置的该圆形区域内抛一个小球,则小球停在该图中阴影部分区域的概率为$\frac{1}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.观察下列等式:
12×231=132×21,
13×341=143×31,
23×352=253×32,
34×473=374×43,
62×286=682×26,
….
以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.
根据上述规律填空:27×792=297×72.

查看答案和解析>>

同步练习册答案