精英家教网 > 初中数学 > 题目详情

已知:正比例函数的图象于反比例函数的图象交于点M(a,1),MN⊥x轴于点N(如图),若△OMN的面积等于2,求这两个函数的解析式。

.

解析试题分析:此题只要求出M点的坐标,问题即可解决,根据M点在正比例函数y=k1x的图象与反比例函数的图象上,把M点坐标用a表示出来,又根据△OMN的面积等于2,求出a值,从而求出M点坐标.
试题解析:∵MN⊥x轴,点M(a,1),∴SOMN=a=2,解得a="4." ∴M(4,1).
∵正比例函数的图象与反比例函数的图象交于点M(4,1),
,解得.
∴正比例函数的解析式是,反比例函数的解析式是.
考点:1.正比例函数和反比例函数的综合题;2.曲线上点的坐标与方程的关系.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,李老师设计了一个探究杠杆平衡条件的实验:在一个自制类似天平的仪器的左边固定托盘A中放置一个重物,在右边的活动托盘B(可左右移动)中放置一定质量的砝码,使得仪器左右平衡,改变活动托盘B与点O的距离x(cm),观察活动托盘B中砝码的质量y(g)的变化情况.实验数据记录如下表:

⑴把上表中(x,y)的各组对应值作为点的坐标,在坐标系中描出相应的点,用平滑曲线连接这些点;
⑵观察所画的图象,猜测y与x之间的函数关系,求出函数关系式并加以验证;
⑶当砝码的质量为24g时,活动托盘B与点O的距离是多少cm?
⑷当活动托盘B往左移动时,应往活动托盘B中添加还是减少砝码?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,一次函数y=-x+b与反比例函数的图象相交于A(-1,4)、B(4,-1)两点,直线l⊥x轴于点E(-4,0),与反比例函数和一次函数的图象分别相交于点C、D,连接AC、BC

(1)、求出b和k;
(2)、求证:△ACD是等腰直角三角形;
(3)、在y轴上是否存在点P,使,若存在,请求出P的坐标,若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,正比例函数的图象与反比例函数)的图象相交于A、B两点,点A的纵坐标为2.(1)求反比例函数的解析式;(2)求出点B的坐标,并根据函数图象,写出当y1>y2时,自变量的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象在第一象限内交于点,与轴交于点,与轴交于点

(1)求一次函数和反比例函数的解析式;
(2)若在轴上存在点,使得,求点的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,抛物线的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.

(1)当m=2时,求点B的坐标;
(2)求DE的长?
(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,函数y1=-x+4的图象与函数y2=(x>0)的图象交于 A(a,1)、B(1,b)两点.

(1)求a,b及y2的函数关系式;
(2)观察图象,当x>0时,比较y1与y2大小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,平面直角坐标系中,直线与x轴交于点A,与双曲线在第一象限内交于点B,BC丄x轴于点C,OC=2AO.求双曲线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).

(1)求反比例函数的解析式;
(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;
(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.

查看答案和解析>>

同步练习册答案